A novel CO2 gas removal design for a micro passive direct methanol fuel cell

被引:6
作者
Li, Yang [1 ]
Zhang, Xuelin [1 ]
Yuan, Weijian [1 ]
Zhang, Yufeng [1 ,2 ]
Liu, Xiaowei [1 ,2 ]
机构
[1] Harbin Inst Technol, MEMS Ctr, Harbin 150001, Heilongjiang, Peoples R China
[2] Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin 150001, Heilongjiang, Peoples R China
关键词
Direct methanol fuel cell; Carbon dioxide; Super hydrophobic; Lateral venting; Mass transport resistance; POLYMER-ELECTROLYTE-MEMBRANE; ANODE DIFFUSION LAYER; CURRENT-COLLECTOR; FLOW-FIELD; DMFC; PERFORMANCE; CROSSOVER; OPTIMIZATION; TRANSPORT; ENERGY;
D O I
10.1016/j.energy.2018.05.159
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents an arrangement of super hydrophobic lateral venting micro channels, which is fabricated around the anode gas diffusion electrode of micro direct methanol fuel cell (1 DMFC). Work in this paper is aimed to prove the validity of the lateral venting design. Three types of DMFCs with lateral venting design is tested by contrast with control groups respectively. With the lateral venting configuration, CO2 gas can release directly from the anode diffusion layer of membrane electrode assembly (MEA), which prevents CO2 gas accumulating on the anode and decreasing the anode mass transportation. Results show that the novel structure can prevent the formation of CO2 gas barrier to a great extent, which not only avoids the anode concentration loss but also improves the discharging stability, providing a new way of design and optimization on the DMFC. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:599 / 607
页数:9
相关论文
共 45 条
[1]   Factors affecting methanol transport in a passive DMFC employing a porous carbon plate [J].
Abdelkareem, Mohammad Ali ;
Morohashi, Nobuto ;
Nakagawa, Nobuyoshi .
JOURNAL OF POWER SOURCES, 2007, 172 (02) :659-665
[2]   Passive direct methanol fuel cells for portable electronic devices [J].
Achmad, F. ;
Kamarudin, S. K. ;
Daud, W. R. W. ;
Majlan, E. H. .
APPLIED ENERGY, 2011, 88 (05) :1681-1689
[3]  
Aricò AS, 2001, FUEL CELLS, V1, P133
[4]   Status of the development of a direct methanol fuel cell [J].
Baldauf, M ;
Preidel, W .
JOURNAL OF POWER SOURCES, 1999, 84 (02) :161-166
[5]   Dominating Role of Aligned MoS2/Ni3S2 Nanoarrays Supported on Three-Dimensional Ni Foam with Hydrophilic Interface for Highly Enhanced Hydrogen Evolution Reaction [J].
Cao, Jiamu ;
Zhou, Jing ;
Zhang, Yufeng ;
Wang, Yuxi ;
Liu, Xiaowei .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) :1752-1760
[6]   Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates [J].
Carton, J. G. ;
Olabi, A. G. .
ENERGY, 2017, 136 :185-195
[7]   Effect of cell orientation on the performance of passive direct methanol fuel cells [J].
Chen, R. ;
Zhao, T. S. ;
Liu, J. G. .
JOURNAL OF POWER SOURCES, 2006, 157 (01) :351-357
[8]   Design and creation of superwetting/antiwetting surfaces [J].
Feng, Xinjian ;
Jiang, Lei .
ADVANCED MATERIALS, 2006, 18 (23) :3063-3078
[9]   Preparation of polymer electrolyte membrane with nanomatrix channel through sulfonation of natural rubber grafted with polystyrene [J].
Fukuhara, Lina ;
Kado, Noriyuki ;
Kosugi, Kenichiro ;
Suksawad, Patjaree ;
Yamamoto, Yoshimasa ;
Ishii, Hiroyuki ;
Kawahara, Seiichi .
SOLID STATE IONICS, 2014, 268 :191-197
[10]   Carbon nanotubes based gas diffusion layers in direct methanol fuel cells [J].
Gao, Y. ;
Sun, G. Q. ;
Wang, S. L. ;
Zhu, S. .
ENERGY, 2010, 35 (03) :1455-1459