Local error estimation for sampling problems

被引:1
|
作者
Yang, SY [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
local error estimation; sampling function; decay estimation; reproducing kernel Hilbert space; wavelet sampling;
D O I
10.1016/j.amc.2003.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to evaluate the local error of the reconstruction formulas in sampling problems. We find that the local error Of Such reconstruction formulas is heavily depending on the asymptotic behavior of the sampling function. By virtue of evaluating the decay of the sampling function, we give a local error estimation for the reconstruction formulas in a multiresolution analysis and shift-invariant space. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:561 / 572
页数:12
相关论文
共 50 条
  • [1] Stable multiscale bases and local error estimation for elliptic problems
    Dahlke, S
    Dahmen, W
    Hochmuth, R
    Schneider, R
    APPLIED NUMERICAL MATHEMATICS, 1997, 23 (01) : 21 - 47
  • [2] Local sampling problems
    Yang, SY
    Lin, W
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 81 - 88
  • [3] The error estimation of sampling in wavelet subspaces
    Chen, W
    Chen, J
    Itoh, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (05) : 835 - 841
  • [4] Sampling error in motor unit estimation
    Slawnych, MP
    Laszlo, CA
    Hershler, C
    CANADIAN MEDICAL AND BIOLOGICAL ENGINEERING SOCIETY, PROCEEDINGS, 1997, : 166 - 167
  • [5] Error estimation of sampling in wavelet subspaces
    Univ of Electro-Communications, Chofu-shi, Japan
    IEICE Trans Fund Electron Commun Comput Sci, 5 (835-841):
  • [6] ERROR ESTIMATION IN SAMPLING DIGITAL WATTMETERS
    FILICORI, F
    MIRRI, D
    RINALDI, M
    IEE PROCEEDINGS-A-SCIENCE MEASUREMENT AND TECHNOLOGY, 1985, 132 (03): : 122 - 128
  • [7] Local error estimation for dimensionally reduced models of elliptic boundary value problems
    Vemaganti, K
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (1-2) : 1 - 14
  • [8] Guaranteed local error estimation for finite element solutions of boundary value problems
    Nakano, Taiga
    Liu, Xuefeng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 425
  • [9] LOCAL ERROR ESTIMATION BY DOUBLING
    SHAMPINE, LF
    COMPUTING, 1985, 34 (02) : 179 - 190
  • [10] ERROR ESTIMATION FOR EIGENVALUE PROBLEMS
    RICHERT, WR
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1973, 53 (04): : T206 - T206