A gauge-compatible Hamiltonian splitting algorithm for particle-in-cell simulations using finite element exterior calculus

被引:3
作者
Glasser, Alexander S. [1 ,2 ]
Qin, Hong [1 ,2 ]
机构
[1] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
关键词
plasma simulation; CHARGE CONSERVATION; PLASMA;
D O I
10.1017/S0022377822000290
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A particle-in-cell algorithm is derived with a canonical Poisson structure in the formalism of finite element exterior calculus. The resulting method belongs to the class of gauge-compatible splitting algorithms, which exactly preserve gauge symmetries and their associated conservation laws via the momentum map. We numerically demonstrate this time invariance of the momentum map and its usefulness in establishing precise initial conditions with a desired initial electric field and fixed background charge. The restriction of this canonical, finite element Poisson structure to the 1X2P 11/2-dimensional phase space is also considered and simulated numerically.
引用
收藏
页数:21
相关论文
共 42 条
  • [11] The geometric theory of charge conservation in particle-in-cell simulations
    Glasser, Alexander S.
    Qin, Hong
    [J]. JOURNAL OF PLASMA PHYSICS, 2020, 86 (03)
  • [12] Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations
    He, Yang
    Sun, Yajuan
    Qin, Hong
    Liu, Jian
    [J]. PHYSICS OF PLASMAS, 2016, 23 (09)
  • [13] Hamiltonian time integrators for Vlasov-Maxwell equations
    He, Yang
    Qin, Hong
    Sun, Yajuan
    Xiao, Jianyuan
    Zhang, Ruili
    Liu, Jian
    [J]. PHYSICS OF PLASMAS, 2015, 22 (12)
  • [14] Subcycling of particle orbits in variational, geometric electromagnetic particle-in-cell methods
    Hirvijoki, Eero
    Kormann, Katharina
    Zonta, Filippo
    [J]. PHYSICS OF PLASMAS, 2020, 27 (09)
  • [15] MHD-kinetic hybrid code based on structure-preserving finite elements with particles-in-cell
    Holderied, Florian
    Possanner, Stefan
    Wang, Xin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 433
  • [16] Energy-conserving time propagation for a structure-preserving particle-in-cell Vlasov-Maxwell solver
    Kormann, Katharina
    Sonnendruecker, Eric
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 425
  • [17] Metriplectic integrators for the Landau collision operator
    Kraus, Michael
    Hirvijoki, Eero
    [J]. PHYSICS OF PLASMAS, 2017, 24 (10)
  • [18] GEMPIC: geometric electromagnetic particle-in-cell methods
    Kraus, Michael
    Kormann, Katharina
    Morrison, Philip J.
    Sonnendruecker, Eric
    [J]. JOURNAL OF PLASMA PHYSICS, 2017, 83 (04)
  • [19] Marsden J.E., 1999, INTRO MECH SYMMETRY, DOI DOI 10.1007/978-0-387-21792-5
  • [20] THE HAMILTONIAN-STRUCTURE OF THE MAXWELL-VLASOV EQUATIONS
    MARSDEN, JE
    WEINSTEIN, A
    [J]. PHYSICA D, 1982, 4 (03): : 394 - 406