COMPOSITION OPERATORS ON WEIGHTED HARDY SPACES

被引:1
|
作者
Al-Rawashdeh, Waleed [1 ]
机构
[1] Univ Montana, Montana Tech, Dept Math Sci, Butte, MT 59701 USA
关键词
Weighted composition operators; compact operator; angular derivative; Schatten p-class; weighted Hardy spaces; COMPACT COMPOSITION OPERATORS;
D O I
10.1216/RMJ-2014-44-4-1053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose phi is an analytic self-map of open unit disk D and psi is an analytic function on D. Then a weighted composition operator induced by psi with weight is given by (W(psi phi)f)(z) = psi(z) f ((phi(z)), for z is an element of D and f analytic on D. Necessary and sufficient conditions are given for the boundedness and compactness of the weighted composition operators W-psi,W-phi. In terms of fixed points in the closed unit disk D, conditions under which W-psi,W-phi is compact are given. Necessary conditions for the compactness of C-phi, are given in terms of the angular derivative phi'(zeta) where zeta is on the boundary of the unit disk. Moreover, we present sufficient conditions for the membership of composition operators in the Schatten p-class S-p(H-s(beta(1)), H-q(beta(2))), where the inducing map has supremum norm strictly smaller than 1.
引用
收藏
页码:1053 / 1072
页数:20
相关论文
共 50 条
  • [31] Calderon-Zygmund Operators on Weighted Hardy Spaces
    Lee, Ming-Yi
    POTENTIAL ANALYSIS, 2013, 38 (03) : 699 - 709
  • [32] Calderón–Zygmund Operators on Weighted Hardy Spaces
    Ming-Yi Lee
    Potential Analysis, 2013, 38 : 699 - 709
  • [33] Composition operators on Hardy-Orlicz spaces
    Rodriguez-Piazza, Luis
    TOPICS IN COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 561 : 91 - 133
  • [34] Composition operators on Hardy-Orlicz spaces
    Liu, LF
    Cao, GF
    Wang, XF
    ACTA MATHEMATICA SCIENTIA, 2005, 25 (01) : 105 - 111
  • [35] Atomic Decomposition and Boundedness of Operators on Weighted Hardy Spaces
    Han, Yongsheng
    Lee, Ming-Yi
    Lin, Chin-Cheng
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (02): : 303 - 314
  • [36] Composition operators on Hardy-Smirnov spaces
    Favaro, V. V.
    Hai, P., V
    Pellegrino, D. M.
    Severiano, O. R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
  • [37] COMPOSITION OPERATORS ON HARDY-ORLICZ SPACES
    刘立芳
    曹广福
    王晓峰
    ActaMathematicaScientia, 2005, (01) : 105 - 111
  • [38] Composition operators on Hardy spaces of Riemann surfaces
    Yang, Xiangdong
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (03) : 351 - 358
  • [39] Composition Operators on Hardy-Orlicz Spaces
    Lefevre, Pascal
    Li, Daniel
    Queffelec, Herve
    Rodriguez-Piazza, Luis
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 207 (974) : 1 - +
  • [40] Sublinear operators on weighted Hardy spaces with variable exponents
    Ho, Kwok-Pun
    FORUM MATHEMATICUM, 2019, 31 (03) : 607 - 617