Solubilization of Sagopilone, a poorly water-soluble anticancer drug, using polymeric micelles for parenteral delivery

被引:38
|
作者
Richter, Annett [2 ]
Olbrich, Carsten [2 ]
Krause, Michael [2 ]
Kissel, Thomas [1 ]
机构
[1] Univ Marburg, Dept Pharmaceut & Biopharm, D-35032 Marburg, Germany
[2] Bayer Schering Pharma AG, Pharmaceut Technol, D-13353 Berlin, Germany
关键词
Polymeric micelles; Solubilization; Epothilones; Apparent solid-state solubility; Thermal analysis; CryoTEM tilt study; BLOCK-COPOLYMER MICELLE; PHASE-II TRIAL; CREMOPHOR-FREE; GENEXOL-PM; POLY(ETHYLENE OXIDE)-B-POLY(EPSILON-CAPROLACTONE); NEW-GENERATION; PACLITAXEL; FORMULATION; PHARMACOKINETICS; NANOPARTICLES;
D O I
10.1016/j.ijpharm.2010.01.032
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Polymeric micelles were studied as a drug delivery system for Sagopilone, a poorly water-soluble anticancer drug, with respect to passive tumour targeting. Poly(ethylene glycol)-b-Poly(lactide) (PEG-b-PLA) and Poly(ethylene glycol)-b-Poly(epsilon-caprolactone) (PEG-b-PCL) were investigated to identify suitable copolymers and to assess the predictive value of solubility parameters. The impact of copolymer compositions (different hydrophobic/hydrophilic-ratios (w/w) from 0.3 to 1.3) and the preparation method (sonication; film formation) on the solubilization efficiency, size characteristics and micelle stability were studied. Thermal analysis was used to determine the apparent solid-state solubility. PEG(2000)-b-PLA(2200), PEG(2000)-b-PCL2500 and PEG(5000)-b-PCL5000 were identified as the most suitable delivery systems for Sagopilone. They exhibited efficient solubilization (>= 70%) yielding small (<100 nm), monodisperse, and spherical micelles. (80 +/- 12), (93 +/- 0.4) and (96 +/- 6)% of the drug still remained solubilized after 24 h, respectively. Calculated solubility parameters were not predictive since they showed a reversed order of preference relative to experimental data. High solubilization after film hydration was accompanied with a 'supersaturation'. The reason for this well-known effect and the solubilization of Sagopilone within the block copolymer was elucidated by the evidence of glass solutions exceeding the solubilization capacity of the corresponding micelles. Overall, micellar drug delivery systems for Sagopilone were identified offering the potential for an improved cancer therapy. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:244 / 253
页数:10
相关论文
共 50 条
  • [1] Polymeric micelles for delivery of poorly water-soluble compounds
    Kwon, GS
    CRITICAL REVIEWS IN THERAPEUTIC DRUG CARRIER SYSTEMS, 2003, 20 (05): : 357 - 403
  • [2] Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs
    Xu, Wei
    Ling, Peixue
    Zhang, Tianmin
    JOURNAL OF DRUG DELIVERY, 2013, 2013
  • [3] Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs
    Sezgin, Zerrin
    Yuksel, Nilufer
    Baykara, Tamer
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2006, 64 (03) : 261 - 268
  • [4] Non-ionic dendritic glycerol-based amphiphiles: Novel excipients for the solubilization of poorly water-soluble anticancer drug Sagopilone
    Richter, Annett
    Wiedekind, Achim
    Krause, Michael
    Kissel, Thomas
    Haag, Rainer
    Olbrich, Carsten
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2010, 40 (01) : 48 - 55
  • [5] Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs
    Shin, Ho-Chul
    Alani, Adam W. G.
    Rao, Deepa A.
    Rockich, Nicole C.
    Kwon, Glen S.
    JOURNAL OF CONTROLLED RELEASE, 2009, 140 (03) : 294 - 300
  • [6] Nanocrystals for the parenteral delivery of poorly water-soluble drugs
    Sun, Bo
    Yeo, Yoon
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (06): : 295 - 301
  • [7] Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs
    Tian, Ye
    Mao, Shirui
    EXPERT OPINION ON DRUG DELIVERY, 2012, 9 (06) : 687 - 700
  • [8] Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine
    Rupp, Christopher
    Steckel, Hartwig
    Mueller, Bernd W.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2010, 395 (1-2) : 272 - 280
  • [9] Polymeric micelles for the delivery of poorly soluble drugs
    Torchilin, Vladimir P.
    Weissig, Volkmar
    ACS Symposium Series, 2000, 752 : 297 - 313
  • [10] Drug delivery strategies for poorly water-soluble drugs
    Fahr, Alfred
    Liu, Xiangli
    EXPERT OPINION ON DRUG DELIVERY, 2007, 4 (04) : 403 - 416