On geometric-arithmetic index

被引:94
作者
Yuan, Yan [1 ]
Zhou, Bo [1 ]
Trinajstic, Nenad [2 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
[2] Rugjer Boskovic Inst, Zagreb 10002, Croatia
关键词
Geometric-arithmetic index; Molecular graphs; Molecular trees; Degree (of vertex);
D O I
10.1007/s10910-009-9603-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The geometric-arithmetic (GA) index is a newly proposed graph invariant in mathematical chemistry. We give the lower and upper bounds for GA index of molecular graphs using the numbers of vertices and edges. We also determine the n-vertex molecular trees with the minimum, the second and the third minimum, as well as the second and the third maximum GA indices.
引用
收藏
页码:833 / 841
页数:9
相关论文
共 13 条
[1]  
FATHTABAR G, J MATH CHEM IN PRESS
[2]   Some new trends in chemical graph theory [J].
Garcia-Domenech, Ramn ;
Galvez, Jorge ;
de Julian-Ortiz, Jesus V. ;
Pogliani, Lionello .
CHEMICAL REVIEWS, 2008, 108 (03) :1127-1169
[3]   Alkanes with small and large Randic connectivity indices [J].
Gutman, I ;
Miljkovic, O ;
Caporossi, G ;
Hansen, P .
CHEMICAL PHYSICS LETTERS, 1999, 306 (5-6) :366-372
[4]  
Gutman I, 2000, MATCH-COMMUN MATH CO, P57
[5]  
Kier L. B., 1986, Research studies
[6]  
Li X., 2006, Mathematical Chemistry Monographs
[7]  
Nordhaus E. A., 1956, Amer. Math. Monthly, V63, P175, DOI DOI 10.2307/2306658
[8]   From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors [J].
Pogliani, L .
CHEMICAL REVIEWS, 2000, 100 (10) :3827-3858
[9]   CHARACTERIZATION OF MOLECULAR BRANCHING [J].
RANDIC, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (23) :6609-6615
[10]  
Todeschini R., 2008, Handbook of Molecular Descriptors