Toward Coding for Maximum Errors in Interactive Communication

被引:31
作者
Braverman, Mark [1 ]
Rao, Anup [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Univ Washington, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Codes and communication channels;
D O I
10.1109/TIT.2014.2353994
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that it is possible to encode any communication protocol between two parties so that the protocol succeeds even if a (1/4 - epsilon) fraction of all symbols transmitted by the parties are corrupted adversarially, at a cost of increasing the communication in the protocol by a multiplicative factor that depends only on epsilon, using an alphabet whose size depends only on epsilon. This improves on an earlier result of Schulman, who showed how to recover when the fraction of errors is bounded by 1/240. We also show how to simulate an arbitrary protocol with a protocol using the binary alphabet, a constant factor increase in communication, and tolerating a 1/8 - epsilon fraction of errors.
引用
收藏
页码:7248 / 7255
页数:8
相关论文
共 10 条
[1]  
Brakerski Z., 2012, P 53 EL C COMP COMPL, V19, P43
[2]  
Braverman M, 2011, ACM S THEORY COMPUT, P159
[3]  
Franklin M., 2012, ELECT C COMPUTATIONA, V19, P104
[4]   Efficient and Explicit Coding for Interactive Communication [J].
Gelles, Ran ;
Moitra, Ankur ;
Sahai, Amit .
2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, :768-777
[5]  
Kushilevitz Eyal, 1996, Communication Complexity
[6]  
Peterson W.W., 1972, Error-correcting codes, V2d
[7]  
Schulman L.J., 2003, POSTCRIPT CODING INT
[8]   Coding for interactive communication [J].
Schulman, LJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) :1745-1756
[9]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[10]  
Sudan M., 2000, Theoretical Computer Science. Exploring New Frontiers of Theoretical Informatics. International Conference IFIP TCS 2000. Proceedings (Lecture Notes in Computer Science Vol.1872), P25