Homoclinic orbits for a special class of nonautonomous Hamiltonian systems

被引:56
作者
Salvatore, A [1 ]
机构
[1] Dipartimento Matemat, I-70125 Bari, Italy
关键词
Hamiltonian systems; homoclinic orbits; variational methods; Palais Smale condition; weighted L-p spaces; genus properties;
D O I
10.1016/S0362-546X(97)00142-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:4849 / 4857
页数:9
相关论文
共 50 条
  • [31] Infinitely many homoclinic orbits for the second-order Hamiltonian systems
    Zou, WM
    Li, SJ
    APPLIED MATHEMATICS LETTERS, 2003, 16 (08) : 1283 - 1287
  • [32] GROUND STATE HOMOCLINIC ORBITS FOR A CLASS OF ASYMPTOTICALLY PERIODIC SECOND-ORDER HAMILTONIAN SYSTEMS
    Lv, Ying
    Xue, Yan-Fang
    Tang, Chun-Lei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03): : 1627 - 1652
  • [33] Homoclinic orbits for a class of second-order Hamiltonian systems with concave-convex nonlinearities
    Wu, Dong-Lun
    Tang, Chun-Lei
    Wu, Xing-Ping
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (06) : 1 - 18
  • [34] HOMOCLINIC ORBITS OF FIRST-ORDER SUPERQUADRATIC HAMILTONIAN SYSTEMS
    Batkam, Cyril Joel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3353 - 3369
  • [35] Homoclinic orbits for a nonperiodic Hamiltonian system
    Ding, Yanheng
    Jeanjean, Louis
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (02) : 473 - 490
  • [36] Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential
    Tang, X. H.
    Xiao, Li
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) : 586 - 594
  • [37] Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential
    Lv, Xiang
    Lu, Shiping
    Yan, Ping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) : 3484 - 3490
  • [38] Multiple homoclinic solutions for a class of nonhomogeneous Hamiltonian systems
    Deng, Chunhua
    Wu, Dong-Lun
    BOUNDARY VALUE PROBLEMS, 2018,
  • [39] Homoclinic Solutions for a Class of Second Order Hamiltonian Systems
    Rong Yuan
    Ziheng Zhang
    Results in Mathematics, 2012, 61 : 195 - 208
  • [40] TWO HOMOCLINIC ORBITS FOR SOME SECOND-ORDER HAMILTONIAN SYSTEMS
    Cerda, Patricio
    Faria, Luiz F. O.
    Toon, Eduard
    Ubilla, Pedro
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (02) : 427 - 444