Additive cyclic codes over finite commutative chain rings

被引:6
作者
Martinez-Moro, Edgar [1 ]
Otal, Kamil [2 ,3 ]
Ozbudak, Ferruh [2 ,3 ]
机构
[1] Univ Valladolid, Math Res Inst, Castilla, Spain
[2] Middle East Tech Univ, Dept Math, Dumlupmar Bulvari 1, TR-06800 Ankara, Turkey
[3] Middle East Tech Univ, Inst Appl Math, Dumlupmar Bulvari 1, TR-06800 Ankara, Turkey
关键词
Cyclic codes; Additive codes; Codes over rings; Finite commutative chain rings; Galois rings; MULTIVARIABLE CODES; GALOIS RINGS; CONSTRUCTION; PREPARATA; KERDOCK;
D O I
10.1016/j.disc.2018.03.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Additive cyclic codes over Galois rings were investigated in Cao et al. (2015). In this paper, we investigate the same problem but over a more general ring family, finite commutative chain rings. When we focus on non-Galois finite commutative chain rings, we observe two different kinds of additivity. One of them is a natural generalization of the study in Cao et al. (2015), whereas the other one has some unusual properties especially while constructing dual codes. We interpret the reasons of such properties and illustrate our results giving concrete examples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1873 / 1884
页数:12
相关论文
共 25 条
[1]  
Bierbrauer J, 2007, LECT NOTES COMPUT SC, V4547, P276
[2]  
Bini Gilberto, 2002, KLUWER INT SER ENG C, V680
[3]  
Calderbank A. R., 1995, Designs, Codes and Cryptography, V6, P21, DOI 10.1007/BF01390768
[4]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[5]   A LINEAR CONSTRUCTION FOR CERTAIN KERDOCK AND PREPARATA CODES [J].
CALDERBANK, AR ;
HAMMONS, AR ;
KUMAR, PV ;
SLOANE, NJA ;
SOLE, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :218-222
[6]   Enumeration and construction of additive cyclic codes over Galois rings [J].
Cao, Yonglin ;
Gao, Jian ;
Fu, Fang-Wei ;
Cao, Yuan .
DISCRETE MATHEMATICS, 2015, 338 (06) :922-937
[7]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[8]   Character sums over Galois rings and primitive polynomials over finite fields [J].
Fan, SQ ;
Han, WB .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (01) :36-52
[9]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[10]   A new theory for algebraic numbers [J].
Hensel, K .
MATHEMATISCHE ZEITSCHRIFT, 1918, 2 :433-452