Distributive lattice decompositions of semirings with a semilattice additive reduct

被引:19
作者
Bhuniya, A. K. [1 ]
Mondal, T. K. [2 ]
机构
[1] Visva Bharati, Dept Math, Santini Ketan 731235, W Bengal, India
[2] Dr BN Dutta Smriti Mahavidyalaya, Dept Math, Burdwan 713407, W Bengal, India
关键词
k-ideal; k-Archimedean semiring; Least distributive lattice congruence; Distributive lattice of k-Archimedean semirings;
D O I
10.1007/s00233-009-9205-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the least distributive lattice congruence on the semirings in the variety of all semirings whose additive reduct is a semilattice, introduce the notion of a k-Archimedean semiring and characterize the semirings that are distributive lattices or chains of k-Archimedean semirings.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 14 条
[1]  
BOGDANOVIC S, 1994, INDIAN J PURE APPL M, V25, P229
[2]  
Bogdanovic S., 1993, FILOMAT, V7, P1
[3]   Semilattice decompositions of semigroups [J].
Ciric, M ;
Bogdanovic, S .
SEMIGROUP FORUM, 1996, 52 (02) :119-132
[4]  
CLIFFORD AH, 1941, ANN MATH, V42, P1037
[5]  
Hebisch U., 1998, Series in Algebra, V5, DOI DOI 10.1142/3903
[6]  
Howie J.M., 1995, Fundamentals of Semigroup Theory
[7]  
Kmet F., 1988, Mathematica Slovaca, V38, P139
[8]  
Mitrovic M.S., 2003, SEMILATTICES ARCHIME
[9]  
Petrich M., 1964, Math. Z, V85, P68, DOI [10.1007/BF01114879, DOI 10.1007/BF01114879]
[10]  
PUTCHA MS, 1973, SEMIGROUP FORUM, V6, P12, DOI DOI 10.1007/BF02389104