Optimization of compute unified device architecture for real-time ultrahigh-resolution optical coherence tomography

被引:9
作者
Kim, Ji-hyun [1 ]
Aum, Jaehong [2 ]
Han, Jae-Ho [1 ]
Jeong, Jichai [1 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul 136701, South Korea
[2] Korea Univ, Dept Comp & Radio Commun Engn, Seoul 136701, South Korea
基金
新加坡国家研究基金会;
关键词
Near infrared optical reflectometry; Optical imaging; Optical coherence tomography; Parallel computing; PATTERN NOISE REMOVAL;
D O I
10.1016/j.optcom.2014.08.067
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an optimized signal processing scheme that utilizes the compute unified device architecture (CUDA) for real-time spectral domain optical coherence tomography (OCT). Because linear spline interpolation and the direct spectral reshaping method have low data and control dependencies, these algorithms maximally utilize graphic processing unit (GPU) resources for dispersion control. In addition, data transfer between main memory and GPU, regarded as one of the most wasteful and time-consuming processes in GPU computing, is executed in parallel with the signal processing by overlapping kernel execution and data transfers. Experimental results obtained from application of the proposed scheme to a laboratory constructed OCT system comprising five spectrally shifted SLDs indicate that the OCT system has an axial resolution of 4.8 mu m [1111 and transverse resolution of 13 01 in air. Further, coherence artifacts are reduced by 3-14 dB over the side-lobes in the point spread function. The optimization of CUDA enables OCT imaging rates up to 350 kHz (A-lines/sec) with a single GTX680 GPU. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:308 / 313
页数:6
相关论文
共 22 条
[11]   Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography [J].
Moon, Sucbei ;
Lee, Sang-Won ;
Chen, Zhongping .
OPTICS EXPRESS, 2010, 18 (24) :24395-24404
[12]   Cancellation of coherent artifacts in optical coherence tomography imaging [J].
Piao, DQ ;
Zhu, QI ;
Dutta, NK ;
Yan, SK ;
Otis, LL .
APPLIED OPTICS, 2001, 40 (28) :5124-5131
[13]   Optical coherence tomography in dermatology [J].
Sattler, Elke ;
Kaestle, Raphaela ;
Welzel, Julia .
JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (06)
[14]   Compact Er:Yb:glass-laser-based supercontinuum source for high-resolution optical coherence tomography [J].
Stumpf, M. C. ;
Zeller, S. C. ;
Schlatter, A. ;
Okuno, T. ;
Suedmeyer, T. ;
Keller, U. .
OPTICS EXPRESS, 2008, 16 (14) :10572-10579
[15]   Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array [J].
Ustun, Teoman E. ;
Iftimia, Nicusor V. ;
Ferguson, R. Daniel ;
Hammer, Daniel X. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (11)
[16]   Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit [J].
Van der Jeught, Sam ;
Bradu, Adrian ;
Podoleanu, Adrian Gh .
JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (03)
[17]   Signal processing for sidelobe suppression in optical coherence tomography images [J].
Wang, Yingli ;
Liang, Yanmei ;
Xu, Kuanhong .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (03) :415-421
[18]   Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit [J].
Watanabe, Yuuki ;
Itagaki, Toshiki .
JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (06)
[19]   Spatially deconvolved optical coherence tomography [J].
Woolliams, Peter D. ;
Ferguson, Robert A. ;
Hart, Christian ;
Grimwood, Alex ;
Tomlins, Peter H. .
APPLIED OPTICS, 2010, 49 (11) :2014-2021
[20]   Real-time display with large field of view on fourier domain optical coherence tomography at 1310 nm wavelength for dermatology [J].
Xiao, Qing ;
Hou, Jue ;
Fu, Ling .
LASER PHYSICS, 2012, 22 (06) :1081-1084