Prediction of Alzheimer's dementia

被引:1
作者
Jessen, F. [1 ]
Dodel, R. [2 ]
机构
[1] Univ Klinikum Bonn, Klin & Poliklin Psychiat & Psychotherapie, Klin Behandlungs & Forschungszentrum Neurodegener, DZNE, Bonn, Germany
[2] Univ Marburg, Klin & Poliklin Neurol, D-35043 Marburg, Germany
来源
NERVENARZT | 2014年 / 85卷 / 10期
关键词
Alzheimer's dementia; Prediction; Mild cognitive impairment; Biomarkers; Prevention; MILD COGNITIVE IMPAIRMENT; DISEASE; MCI; BIOMARKERS;
D O I
10.1007/s00115-014-4064-0
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The prediction of Alzheimer's dementia is relevant for the development and design of prevention trials but also for individual counselling of patients. There are two key characteristics which determine the level of prediction that can be achieved. Firstly, the prevalence of Alzheimer's dementia in the respective setting is important. In low prevalence settings, such as primary care populations, it is probably impossible to achieve positive predictive values above 50 %. In high prevalence settings, such as memory clinics, the positive predictive value of Alzheimer's dementia can be much higher. The second major characteristic is the level of cognitive impairment of an individual. The predictive power for Alzheimer's dementia increases from the cognitively healthy status to the status of progressive mild cognitive impairment. Prediction can further be increased by the use of cerebral spinal fluid and brain imaging biomarkers of Alzheimer's disease. The combination of different biomarkers may increase prediction even further. The present article reviews studies and outlines the principles of prediction of Alzheimer's dementia.
引用
收藏
页码:1233 / 1237
页数:5
相关论文
共 50 条
  • [41] Beta-to-Theta Entropy Ratio of EEG in Aging, Frontotemporal Dementia, and Alzheimer's ' Dementia
    Zandbagleh, Ahmad
    Miltiadous, Andreas
    Sanei, Saeid
    Azami, Hamed
    AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY, 2024, 32 (11) : 1361 - 1382
  • [42] Increased prediction value of biomarker combinations for the conversion of mild cognitive impairment to Alzheimer's dementia
    Zhao, Aonan
    Li, Yuanyuan
    Yan, Yi
    Qiu, Yinghui
    Li, Binyin
    Xu, Wei
    Wang, Ying
    Liu, Jun
    Deng, Yulei
    TRANSLATIONAL NEURODEGENERATION, 2020, 9 (01)
  • [43] Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia
    Ewers, Michael
    Sperling, Reisa A.
    Klunk, William E.
    Weiner, Michael W.
    Hampel, Harald
    TRENDS IN NEUROSCIENCES, 2011, 34 (08) : 430 - 442
  • [44] Alzheimer-type dementia prediction by sparse logistic regression using claim data
    Fukunishi, Hiroaki
    Nishiyama, Mitsuki
    Luo, Yuan
    Kubo, Masahiro
    Kobayashi, Yasuki
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 196
  • [45] Quantifying brain metabolism from FDG-PET images into a probability of Alzheimer's dementia score
    Yee, Evangeline
    Popuri, Karteek
    Beg, Mirza Faisal
    HUMAN BRAIN MAPPING, 2020, 41 (01) : 5 - 16
  • [46] Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer's type based on a three-dimensional convolutional neural network
    Bae, Jinhyeong
    Stocks, Jane
    Heywood, Ashley
    Jung, Youngmoon
    Jenkins, Lisanne
    Hill, Virginia
    Katsaggelos, Aggelos
    Popuri, Karteek
    Rosen, Howie
    Beg, M. Faisal
    Wang, Lei
    NEUROBIOLOGY OF AGING, 2021, 99 : 53 - 64
  • [47] Causes and Patterns of Dementia: An Update in the Era of Redefining Alzheimer's Disease
    James, Bryan D.
    Bennett, David A.
    ANNUAL REVIEW OF PUBLIC HEALTH, VOL 40, 2019, 40 : 65 - 84
  • [48] Biomarkers of Dementia with Lewy Bodies: Differential Diagnostic with Alzheimer's Disease
    Bousiges, Olivier
    Blanc, Frederic
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (12)
  • [49] Diagnosing Alzheimer's dementia in Down syndrome: Problems and possible solutions
    Nieuwenhuis-Mark, Ruth E.
    RESEARCH IN DEVELOPMENTAL DISABILITIES, 2009, 30 (05) : 827 - 838
  • [50] Separating dementia with Lewy bodies from Alzheimer's disease dementia using a volumetric MRI classifier
    van Gils, Aniek M.
    Tolonen, Antti J.
    Rhodius-Meester, Hanneke F. M.
    Mecocci, Patrizia
    Vanninen, Ritva
    Frederiksen, Kristian Steen
    Barkhof, Frederik
    Jasperse, Bas
    Lotjonen, Jyrki
    van der Flier, Wiesje M.
    Lemstra, Afina W.
    EUROPEAN RADIOLOGY, 2024, : 3753 - 3767