Prediction of Alzheimer's dementia

被引:1
作者
Jessen, F. [1 ]
Dodel, R. [2 ]
机构
[1] Univ Klinikum Bonn, Klin & Poliklin Psychiat & Psychotherapie, Klin Behandlungs & Forschungszentrum Neurodegener, DZNE, Bonn, Germany
[2] Univ Marburg, Klin & Poliklin Neurol, D-35043 Marburg, Germany
来源
NERVENARZT | 2014年 / 85卷 / 10期
关键词
Alzheimer's dementia; Prediction; Mild cognitive impairment; Biomarkers; Prevention; MILD COGNITIVE IMPAIRMENT; DISEASE; MCI; BIOMARKERS;
D O I
10.1007/s00115-014-4064-0
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The prediction of Alzheimer's dementia is relevant for the development and design of prevention trials but also for individual counselling of patients. There are two key characteristics which determine the level of prediction that can be achieved. Firstly, the prevalence of Alzheimer's dementia in the respective setting is important. In low prevalence settings, such as primary care populations, it is probably impossible to achieve positive predictive values above 50 %. In high prevalence settings, such as memory clinics, the positive predictive value of Alzheimer's dementia can be much higher. The second major characteristic is the level of cognitive impairment of an individual. The predictive power for Alzheimer's dementia increases from the cognitively healthy status to the status of progressive mild cognitive impairment. Prediction can further be increased by the use of cerebral spinal fluid and brain imaging biomarkers of Alzheimer's disease. The combination of different biomarkers may increase prediction even further. The present article reviews studies and outlines the principles of prediction of Alzheimer's dementia.
引用
收藏
页码:1233 / 1237
页数:5
相关论文
共 50 条
  • [31] Reduce the Risk of Dementia; Early Diagnosis of Alzheimer's Disease
    Jakhmola, Shweta
    Jha, Hem Chandra
    MACHINE INTELLIGENCE AND SIGNAL ANALYSIS, 2019, 748 : 621 - 632
  • [32] Vascular dementia subtypes, pathophysiology, genetics, neuroimaging, biomarkers, and treatment updates along with its association with Alzheimer's dementia and diabetes mellitus
    Prajjwal, Priyadarshi
    Marsool, Mohammed Dheyaa Marsool
    Inban, Pugazhendi
    Sharma, Bhavya
    Asharaf, Shahnaz
    Aleti, Soumya
    Gadam, Srikanth
    Al Sakini, Ahmed Sermed
    Hadi, Dalia Dhia
    DM DISEASE-A-MONTH, 2023, 69 (05):
  • [33] Relationship of dementia screening tests with biomarkers of Alzheimer's disease
    Galvin, James E.
    Fagan, Anne M.
    Holtzman, David M.
    Mintun, Mark A.
    Morris, John C.
    BRAIN, 2010, 133 : 3290 - 3300
  • [34] Retinal biomarkers for the risk of Alzheimer's disease and frontotemporal dementia
    Wang, Ruihan
    Cai, Jiajie
    Gao, Yuzhu
    Tang, Yingying
    Gao, Hui
    Qin, Linyuan
    Cai, Hanlin
    Yang, Feng
    Ren, Yimeng
    Luo, Caimei
    Feng, Shiyu
    Yin, Hongbo
    Zhang, Ming
    Luo, Chunyan
    Gong, Qiyong
    Xiao, Xiong
    Chen, Qin
    FRONTIERS IN AGING NEUROSCIENCE, 2025, 16
  • [35] Improving Alzheimer's disease classification by performing data fusion with vascular dementia and stroke data
    Bosnic, Zoran
    Bratic, Brankica
    Ivanovic, Mirjana
    Semnic, Marija
    Oder, Iztok
    Kurbalija, Vladimir
    Stankov, Tijana Vujanic
    Ignjatovic, Vojislava Bugarski
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2021, 33 (06) : 1015 - 1032
  • [36] Analysis of Why Alzheimer's Dementia Never Spontaneously Reverses, Suggests the Basis for Curative Treatment
    Fessel, Jeffrey
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (14)
  • [37] Development of a smartphone screening test for preclinical Alzheimer's disease and validation across the dementia continuum
    Alty, Jane
    Goldberg, Lynette R.
    Roccati, Eddy
    Lawler, Katherine
    Bai, Quan
    Huang, Guan
    Bindoff, Aidan D.
    Li, Renjie
    Wang, Xinyi
    St George, Rebecca J.
    Rudd, Kaylee
    Bartlett, Larissa
    Collins, Jessica M.
    Aiyede, Mimieveshiofuo
    Fernando, Nadeeshani
    Bhagwat, Anju
    Giffard, Julia
    Salmon, Katharine
    McDonald, Scott
    King, Anna E.
    Vickers, James C.
    BMC NEUROLOGY, 2024, 24 (01)
  • [38] Regional Amyloid-β Load and White Matter Abnormalities Contribute to Hypometabolism in Alzheimer's Dementia
    Schilling, Lucas Porcello
    Pascoal, Tharick A.
    Zimmer, Eduardo R.
    Mathotaarachchi, Sulantha
    Shin, Monica
    de Mello Rieder, Carlos Roberto
    Gauthier, Serge
    Palmini, Andre
    Rosa-Neto, Pedro
    Weiner, Michael W.
    Aisen, Paul
    Petersen, Ronald
    Jack, Clifford R., Jr.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Kaye, Jeffrey
    Quinn, Joseph
    Silbert, Lisa
    Lind, Betty
    Carter, Raina
    Dolen, Sara
    Schneider, Lon S.
    Pawluczyk, Sonia
    Beccera, Mauricio
    Teodoro, Liberty
    Spann, Bryan M.
    Brewer, James
    Vanderswag, Helen
    Fleisher, Adam
    Heidebrink, Judith L.
    Lord, Joanne L.
    Mason, Sara S.
    Albers, Colleen S.
    Knopman, David
    Johnson, Kris
    Doody, Rachelle S.
    Villanueva-Meyer, Javier
    Chowdhury, Munir
    Rountree, Susan
    Dang, Mimi
    Stern, Yaakov
    Honig, Lawrence S.
    Bell, Karen L.
    Ances, Beau
    MOLECULAR NEUROBIOLOGY, 2019, 56 (07) : 4916 - 4924
  • [39] Development of interventions for the secondary prevention of Alzheimer's dementia: the European Prevention of Alzheimer's Dementia (EPAD) project
    Ritchie, Craig W.
    Molinuevo, Jose Luis
    Truyen, Luc
    Satlin, Andrew
    Van der Geyten, Serge
    Lovestone, Simon
    LANCET PSYCHIATRY, 2016, 3 (02): : 179 - 186
  • [40] Prediction of Alzheimer's Dementia in Patients with Amnestic Mild Cognitive Impairment in Clinical Routine: Incremental Value of Biomarkers of Neurodegeneration and Brain Amyloidosis Added Stepwise to Cognitive Status
    Lange, Catharina
    Suppa, Per
    Pietrzyk, Uwe
    Makowski, Marcus R.
    Spies, Lothar
    Peters, Oliver
    Buchert, Ralph
    JOURNAL OF ALZHEIMERS DISEASE, 2018, 61 (01) : 373 - 388