Robust weighted information fusion steady-state Kalman smoothers for multisensor system with uncertain noise variances

被引:0
|
作者
Qi, Wen-Juan [1 ]
Zhang, Peng [1 ]
Deng, Zi-Li [1 ]
机构
[1] Heilongjiang Univ, Dept Automat, Harbin, Peoples R China
关键词
multisensor information fusion; weighted fusion; minimax robust estimation; robust Kalman smoother; robust accuracy; uncertain noise variance; Lyapunov equation approach; TIME-VARYING SYSTEMS; COVARIANCE INTERSECTION; STOCHASTIC-SYSTEMS; FILTER; SENSORS;
D O I
10.1093/imamci/dnu042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the problem of designing the robust weighted fusion steady-state Kalman smoothers for multisensor system with uncertain noise variances. Applying the augmented state method, the problem of designing the robust Kalman smoothers can be converted into that of designing the equivalent robust Kalman filters. According to the minimax robust estimation principle and the unbiased linear minimum variance optimal estimation rule, based on the worst-case conservative system with conservative upper bounds of noise variances, the local and five weighted fusion robust steady-state Kalman smoothers are presented. For all admissible uncertainties of noise variances, the minimal upper bound of the actual smoothing error variances is given. A Lyapunov equation approach for the robustness analysis is presented, the concept of robust accuracy is presented, and the robust accuracy relations of the local and fused robust Kalman smoothers are proved. A simulation example verifies the robustness and robust accuracy relations.
引用
收藏
页码:365 / 388
页数:24
相关论文
共 50 条
  • [1] Weighted Fusion Robust Steady-State Kalman Filters for Multisensor System with Uncertain Noise Variances
    Qi, Wen-Juan
    Zhang, Peng
    Deng, Zi-Li
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [2] Robust weighted fusion steady-state white noise deconvolution smoothers for multisensor systems with uncertain noise variances
    Liu, Wen-Qiang
    Wang, Xue-Mei
    Deng, Zi-Li
    SIGNAL PROCESSING, 2016, 122 : 98 - 114
  • [3] Robust weighted fusion time-varying Kalman smoothers for multisensor system with uncertain noise variances
    Qi, Wenjuan
    Zhang, Peng
    Deng, Zili
    INFORMATION SCIENCES, 2014, 282 : 15 - 37
  • [4] Robust Weighted Fusion Steady-State Kalman Predictors With Uncertain Noise Variances
    Qi, Wenjuan
    Zhang, Peng
    Deng, Zili
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (03) : 1077 - 1088
  • [5] Covariance intersection fusion robust steady-state Kalman smoother for multisensor system with uncertain noise variances
    Qi, Wen-Juan
    Zhang, Peng
    Deng, Zi-Li
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 476 - 481
  • [6] Guaranteed cost robust weighted measurement fusion steady-state Kalman predictors with uncertain noise variances
    Yang Chunshan
    Yang Zhibo
    Deng Zili
    AEROSPACE SCIENCE AND TECHNOLOGY, 2015, 46 : 459 - 470
  • [7] Robust Measurement Fusion Steady-State Kalman Predictor for Multisensor Uncertain System
    Yang, Chunshan
    Deng, Zili
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ESTIMATION, DETECTION AND INFORMATION FUSION ICEDIF 2015, 2015, : 93 - 99
  • [8] Robust steady-state Kalman predictor with uncertain parameters and noise variances
    Qi, Wenjuan
    Sheng, Zunbin
    Cong, Shen
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 2534 - 2537
  • [9] Modified Robust Covariance Intersection Fusion Steady-State Kalman Estimators with Uncertain Noise Variances
    Wang Xuemei
    Liu Wenqiang
    Deng Zili
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 3194 - 3200
  • [10] Robust Guaranteed Cost Measurement Fusion Steady-State Kalman Filters with Uncertain Noise Variances
    Yang, Chunshan
    Deng, Zili
    2016 IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY ICEICT 2016 PROCEEDINGS, 2016, : 249 - 254