An overview of STAR experimental results

被引:41
作者
Xu, Nu [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA
[2] Cent China Normal Univ, Key Lab Quarks & Lepton Phys, MOE, Wuhan 430079, Peoples R China
[3] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Quark-gluon plasma; QCD; Energy loss; Phase transition; Critical point; AU PLUS AU; NUCLEUS-NUCLEUS COLLISIONS; U COLLISIONS; ENERGY-DEPENDENCE; HADRON-PRODUCTION; FLOW; MATTER; CHARGE; DISTRIBUTIONS; SUPPRESSION;
D O I
10.1016/j.nuclphysa.2014.10.022
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
With large acceptance and excellent particle identification, STAR is one of the best mid-rapidity collider experiments for studying high-energy nuclear collisions. The STAR experiment provides full information on initial conditions, properties of the hot and dense medium as well as the properties at freeze-out. In Au+Au collisions at,root s(NN) = 200 GeV, STAR's focus is on the nature of the sQGP produced at RHIC. In order to explore the properties of the QCD phase diagram, since 2010, the experiment has collected sizable data sets of Au+Au collisions at the lower collision energy region where the net-baryon density is large. At the 2014 Quark Matter Conference, the STAR experiment made 16 presentations that cover physics topics including collective dynamics, electromagnetic probes, heavy-flavor, initial state physics, jets, QCD phase diagram, thermodynamics and hadron chemistry, and future experimental facilities, upgrades, and instrumentation [1]. In this overview we will highlight a few results from the STAR experiment, especially those from the recent measurements of the RHIC beam energy scan program. At the end, instead of a summary, we will discuss STAR's near future physics programs at RHIC. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 69 条
[21]   Third Moments of Conserved Charges as Probes of QCD Phase Structure [J].
Asakawa, Masayuki ;
Ejiri, Shinji ;
Kitazawa, Masakiyo .
PHYSICAL REVIEW LETTERS, 2009, 103 (26)
[22]   Microscopic models for ultrarelativistic heavy ion collisions [J].
Bass, SA ;
Belkacem, M ;
Bleicher, M ;
Brandstetter, M ;
Bravina, L ;
Ernst, C ;
Gerland, L ;
Hofmann, M ;
Hofmann, S ;
Konopka, J ;
Mao, G ;
Neise, L ;
Soff, S ;
Spieles, C ;
Weber, H ;
Winckelmann, LA ;
Stocker, H ;
Greiner, W ;
Hartnack, C ;
Aichelin, J ;
Amelin, N .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 41, 1998, 41 :255-369
[23]   Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model [J].
Bleicher, M ;
Zabrodin, E ;
Spieles, C ;
Bass, SA ;
Ernst, C ;
Soff, S ;
Bravina, L ;
Belkacem, M ;
Weber, H ;
Stöcker, H ;
Greiner, W .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1999, 25 (09) :1859-1896
[24]   The quest for the quark-gluon plasma [J].
Braun-Munzinger, Peter ;
Stachel, Johanna .
NATURE, 2007, 448 (7151) :302-309
[25]   Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature [J].
Cheng, M. ;
Hegde, P. ;
Jung, C. ;
Karsch, F. ;
Kaczmarek, O. ;
Laermann, E. ;
Mawhinney, R. D. ;
Miao, C. ;
Petreczky, P. ;
Schmidt, C. ;
Soeldner, W. .
PHYSICAL REVIEW D, 2009, 79 (07)
[26]   Comparison of chemical freeze-out criteria in heavy-ion collisions [J].
Cleymans, J ;
Oeschler, H ;
Redlich, K ;
Wheaton, S .
PHYSICAL REVIEW C, 2006, 73 (03)
[27]   The QCD Critical Point : marching towards continuum [J].
Datta, Saumen ;
Gavai, Rajiv V. ;
Gupta, Sourendu .
NUCLEAR PHYSICS A, 2013, 904 :883C-886C
[28]  
Fodor Z, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/04/050
[29]   Conserved number fluctuations in a hadron resonance gas model [J].
Garg, P. ;
Mishra, D. K. ;
Netrakanti, P. K. ;
Mohanty, B. ;
Mohanty, A. K. ;
Singh, B. K. ;
Xu, N. .
PHYSICS LETTERS B, 2013, 726 (4-5) :691-696
[30]   Lattice QCD predictions for shapes of event distributions along the freezeout curve in heavy-ion collisions [J].
Gavai, R. V. ;
Gupta, Sourendu .
PHYSICS LETTERS B, 2011, 696 (05) :459-463