Cerium oxide nanoparticles anchored onto graphene oxide for the removal of heavy metal ions dissolved in water

被引:8
|
作者
Contreras Rodriguez, Ada Rebeca [1 ]
McCarthy, Joseph E. [2 ]
Alonso, Amanda [1 ]
Moral-Vico, J. [1 ]
Font, Xavier [1 ]
Gunko, Yurii K. [2 ,3 ]
Sanchez, Antoni [1 ]
机构
[1] Univ Autonoma Barcelona, Escola Engn, Dept Chem Biol & Environm Engn, Bellaterra 08193, Spain
[2] Trinity Coll Dublin, Sch Chem, Dublin 2, Ireland
[3] ITMO Univ, St Petersburg 197101, Russia
关键词
Cerium oxide nanoparticles; In-situ growth; Self-assembly; Graphene oxide; Heavy metals removal; Nanocomposite; WASTE-WATER; FE3O4; NANOPARTICLES; COPPER ADSORPTION; AQUEOUS-SOLUTIONS; EFFICIENCY; NANOSHEETS; LEAD; PRECONCENTRATION; BIOSORPTION; REMEDIATION;
D O I
10.5004/dwt.2018.22735
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The aim of this study is to investigate the possibility of using cerium oxide (CeO2) nanoparticles (NPs) attached to reduced graphene oxide (rGO) as an alternative adsorbent for cadmium (II), lead (II) and chromium (VI) removal from aqueous solution. The new nanomaterials (CeO2/rGO) were obtained following two different strategies, in-situ growth and self-assembly approach. The adsorption capacities for each heavy metal were investigated at a fixed pH (5.5-6), a range concentration of heavy metal from 5 to 250 mg/L and a fixed concentration of 0.05 mg of CeO2/rGO nanomaterial. The experimental data were fitted using the Langmuir, Freundlich and Temkin isotherms models. The experimental data of each nanomaterial for the removal of Pb(II) were approximated best by the Langmuir model, while for the removal of Cd(II) Langmuir and Freundlich showed good regression coefficients. The study showed that CeO2 NPs attached to rGO could be used as an efficient adsorbent material for the adsorption of cadmium and lead from aqueous solution. The nanomaterial obtained by in-situ growth registered the highest adsorption capacity for the removal of lead (95.75 mg Pb2+/g CeO2/rGO-HMT), while in the case of cadmium the highest adsorption was obtained with the nanomaterial synthesized following the self-assembly approach (31.26 mg Cd2+/gCeO(2)/rGO-AM).
引用
收藏
页码:134 / 145
页数:12
相关论文
共 50 条
  • [31] Removal of Heavy Metal Ions in Environmental Water by Recycling Magnetic Nanoparticles
    Tao, Long
    Xu, Lan-Ying
    Wang, Ju-Ping
    Shi, Zhi-Guo
    MATERIALS AND MANUFACTURING PROCESSES, 2013, 29 (01) : 69 - 73
  • [32] Synthesis and characterization of graphene oxide (GO) for the removal of lead ions in water
    Mokoena, L. S.
    Mofokeng, J. P.
    CARBON TRENDS, 2024, 15
  • [33] Carboxymethylcellulose-Graphene Oxide Composite Material, Decorated with Iron Nanoparticles for Sorption Removal of Heavy Metal Ions from Polluted Aqueous Media
    Neskoromnaya, E. A.
    Melezhyk, A. V.
    Mkrtchan, E. S.
    Memetova, A. E.
    Babkin, A. V.
    INORGANIC MATERIALS-APPLIED RESEARCH, 2023, 14 (02) : 358 - 367
  • [34] Preparation of iron oxide nanoparticles doped with divalent metal: Application for heavy metal removal from waste water
    Mishal, M.
    Alonizan, N. H.
    Hjiri, M.
    Aida, M. S.
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY (TMREES19), 2019, 2123
  • [35] Highly Porous Hydroxyapatite/Graphene Oxide/Chitosan Beads as an Efficient Adsorbent for Dyes and Heavy Metal Ions Removal
    Nguyen Van Hoa
    Nguyen Cong Minh
    Hoang Ngoc Cuong
    Pham Anh Dat
    Pham Viet Nam
    Pham Hau Thanh Viet
    Pham Thi Dan Phuong
    Trang Si Trung
    MOLECULES, 2021, 26 (20):
  • [36] Synthesis and Characterization of Chitosan and Graphene Oxide to Form a Nano-Composite Hydrogel for the Removal of Heavy Metal Ions
    Faheem, Sarah
    Sohail, Muhammad
    Hussain, Fayaz
    Maaz, Muhammad
    Abbas, Bilal
    JOURNAL OF WATER CHEMISTRY AND TECHNOLOGY, 2021, 43 (01) : 22 - 28
  • [37] Synthesis and Characterization of Chitosan and Graphene Oxide to Form a Nano-Composite Hydrogel for the Removal of Heavy Metal Ions
    Muhammad Sarah Faheem
    Fayaz Sohail
    Muhammad Hussain
    Bilal Maaz
    Journal of Water Chemistry and Technology, 2021, 43 : 22 - 28
  • [38] Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review
    Liu, Xiaolu
    Ma, Ran
    Wang, Xiangxue
    Ma, Yan
    Yang, Yongping
    Zhuang, Li
    Zhang, Sai
    Jehan, Riffat
    Chen, Jianrong
    Wang, Xiangke
    ENVIRONMENTAL POLLUTION, 2019, 252 : 62 - 73
  • [39] Wettability of ZnO and curcumin decorated Graphene oxide nanocomposite for heavy metal ion removal from water
    Chakraborty, Nabanita
    Acharyya, Swati Ghosh
    Roy, Anindya
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (NANO), 2022, : 52 - 55
  • [40] Sulfonated Pentablock Copolymer Membranes and Graphene Oxide Addition for Efficient Removal of Metal Ions from Water
    Filice, Simona
    Mazurkiewicz-Pawlicka, Marta
    Malolepszy, Artur
    Stobinski, Leszek
    Kwiatkowski, Ryszard
    Boczkowska, Anna
    Gradon, Leon
    Scalese, Silvia
    NANOMATERIALS, 2020, 10 (06)