Nonparametric adaptive density estimation on random fields using wavelet method

被引:3
作者
Li, Linyuan [1 ]
机构
[1] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
关键词
Random fields; Wavelet estimator; Minimax estimation; Mixing errors; KERNEL;
D O I
10.1016/j.spl.2014.10.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider non-linear wavelet-based estimators of density functions with stationary random fields, which are indexed by the integer lattice points in the N-dimensional Euclidean space and are assumed to satisfy some mixing conditions. We investigate their asymptotic rates of convergence based on thresholding of empirical wavelet coefficients and show that these estimators achieve nearly optimal convergence rates within a logarithmic term over a large range of Besov function classes B-p,q(s), Therefore, wavelet estimators still achieve nearly optimal convergence rates for random fields and provide explicitly the extraordinary local adaptability. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:346 / 355
页数:10
相关论文
共 31 条
  • [1] [Anonymous], 1992, CBMS-NSF Reg. Conf. Ser. in Appl. Math
  • [2] [Anonymous], 1995, RANDOM FIELDS NETWOR
  • [3] [Anonymous], 1992, Theory of function spaces, DOI DOI 10.1007/978-3-0346-0419-2
  • [4] [Anonymous], 1991, STAT SPATIAL DATA
  • [5] [Anonymous], 1999, INTERPOLATION SPATIA
  • [6] Anselin L., 1995, NEW DIRECTION SPATIA
  • [7] Banerjee S, 2004, CHAPMAN HALL CRC MON
  • [8] Biau G., 2004, Stat. Inference Stoch. Process, V7, P327, DOI [10.1023/B:SISP.0000049116.23705.88, DOI 10.1023/B:SISP.0000049116.23705.88]
  • [9] Biau G., 2003, MATH METHODS STAT, V12, P371
  • [10] Density estimation for nonisotropic random fields
    Bradley, RC
    Tran, LT
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 81 (01) : 51 - 70