Irregularity Index for Vector-Valued Morphological Operators

被引:1
|
作者
Valle, Marcos Eduardo [1 ]
Francisco, Samuel [2 ]
Granero, Marco Aurelio [2 ]
Velasco-Forero, Santiago [3 ]
机构
[1] Univ Estadual Campinas, Campinas, SP, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Sao Paulo, Sao Paulo, SP, Brazil
[3] PSL Res Univ, Ctr Math Morphol, Mines ParisTech, Paris, France
基金
巴西圣保罗研究基金会;
关键词
Mathematical morphology; Vector-valued images; Total order; Irregularity issue; Optimal transport; MATHEMATICAL MORPHOLOGY;
D O I
10.1007/s10851-022-01092-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mathematical morphology is a valuable theory of nonlinear operators widely used for image processing and analysis. Although initially conceived for binary images, mathematical morphology has been successfully extended to vector-valued images using several approaches. Vector-valued morphological operators based on total orders are particularly promising because they circumvent the problem of false colors. On the downside, they often introduce irregularities in the output image. This paper proposes measuring the irregularity of a vector-valued morphological operator by the relative gap between the generalized sum of pixel-wise distances and the Wasserstein metric. Apart from introducing a measure of the irregularity, referred to as the irregularity index, this paper also addresses its computational implementation. Precisely, we distinguish between the ideal global and the practical local irregularity indexes. The local irregularity index, which can be computed more quickly by aggregating values of local windows, yields a lower bound for the global irregularity index. Computational experiments with natural images illustrate the effectiveness of the proposed irregularity indexes.
引用
收藏
页码:754 / 770
页数:17
相关论文
共 50 条
  • [21] Composition Operators on Vector-Valued Function Spaces
    Kim, Sumin
    COMPLEX ANALYSIS AND OPERATOR THEORY, 1600, 0 (00): : 0306-4565 - 1879-0992
  • [22] On the vector-valued Fourier transform and compatibility of operators
    Park, IS
    STUDIA MATHEMATICA, 2005, 168 (02) : 95 - 108
  • [23] Entropy numbers of vector-valued diagonal operators
    Belinsky, E
    JOURNAL OF APPROXIMATION THEORY, 2002, 117 (01) : 132 - 139
  • [24] Kantorovich Version of Vector-Valued Shepard Operators
    Duman, Oktay
    Della Vecchia, Biancamaria
    Erkus-Duman, Esra
    AXIOMS, 2024, 13 (03)
  • [25] Extrapolation of vector-valued rearrangement operators II
    Mueller, Paul F. X.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 722 - 736
  • [26] Hypercyclic Operators on Vector-Valued Hardy Spaces
    Hamid Rezaei
    Javad Amini Ab Alvan
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 875 - 881
  • [27] On the numerical index of vector-valued function spaces
    Ed-Dari, Elmouloudi
    Khamsi, Mohamed Amine
    Aksoy, Asuman Gueven
    LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (06): : 507 - 513
  • [28] Numerical index of vector-valued function spaces
    Martín, M
    Payá, R
    STUDIA MATHEMATICA, 2000, 142 (03) : 269 - 280
  • [29] Constructions of Vector-Valued Filters and Vector-Valued Wavelets
    He, Jianxun
    Huang, Shouyou
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [30] Numerical index of vector-valued function spaces
    Baker, Abdullah Bin Abu
    Botelho, Fernanda
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (11): : 2117 - 2126