A Modified Particle Swarm Optimization for Parameters Identification of Photovoltaic Models

被引:0
|
作者
Yu, K. J. [1 ]
Ge, S. L. [2 ]
Qu, B. Y. [3 ]
Liang, J. J. [1 ]
机构
[1] Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Res Inst, Sch Ind Technol, Zhengzhou 450001, Henan, Peoples R China
[3] Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou 450007, Henan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
parameters identification; particle swarm optimization; photovoltaic models; SOLAR-CELL MODELS; ARTIFICIAL BEE COLONY; PV CELLS; EXTRACTION; ALGORITHM;
D O I
10.1109/cec.2019.8790203
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Parameters idenfification of solar photovoltaic (FY) models, as a complex nonlinear optimization problem, has received more and more attention of many scholars. Although there have been already numerotis techniques for this problem., it is still challenging to identify tile model parameters accurately. For the purpose of improving the results of parameters identification of different photovoltaic models, a modified particle swarm optimization (MPSO) algorithm is proposed itt this paper. In MPSO, in order to explore more promising regions of the search space, a mutation operation disliked by differential evolution is employed to improve the quality, of personal best of each particle as well as the glolval best of the current population. Moreover, the damping bound-bandling method is used to alleviate the premature convergence, The effectiveness of MPSO is validated "Via estimating parameters of the single diode, double diode, and photovoltaic module model, respectively. The simulattion and experimental results comprehensiyely demonstrate the superiority' of %IPSO compared to other stateof-the-art algorithms.
引用
收藏
页码:2634 / 2641
页数:8
相关论文
共 50 条
  • [1] An improved lion swarm optimization for parameters identification of photovoltaic cell models
    Wu, Zhong-qiang
    Xie, Zong-kui
    Liu, Chong-yang
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020, 42 (06) : 1191 - 1203
  • [2] Particle Swarm Optimization for Photovoltaic Model Identification
    Nunes, Hugo
    Pombo, Jose
    Fermeiro, Joao
    Mariano, Silvio
    Calado, Maria do Rosario
    2017 INTERNATIONAL YOUNG ENGINEERS FORUM (YEF-ECE), 2017, : 53 - 58
  • [3] A landscape-aware particle swarm optimization for parameter identification of photovoltaic models
    Li, Yaxin
    Yu, Kunjie
    Liang, Jing
    Yue, Caitong
    Qiao, Kangjia
    APPLIED SOFT COMPUTING, 2022, 131
  • [4] Parameters identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture
    Lin, Xiankun
    Wu, Yuhang
    ENERGY, 2020, 196
  • [5] Firefly Algorithm and Particle Swarm Optimization for photovoltaic parameters identification based on single model
    Cimen, Murat Erhan
    Garip, Zeynep
    Boz, Ali Fuat
    Karayel, Durmus
    2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT), 2018, : 510 - 514
  • [6] Modal parameters identification with particle swarm optimization
    Galewski, M.A., 1600, Trans Tech Publications Ltd (597):
  • [7] Optimization of PEMFC model parameters with a modified particle swarm optimization
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) : 1258 - 1265
  • [8] Modified Particle Swarm Optimization Algorithm for Sizing Photovoltaic System
    Souza, J. S.
    Molina, Y. P.
    Araujo, C. S.
    Farias, W. P.
    Araujo, I. S.
    IEEE LATIN AMERICA TRANSACTIONS, 2017, 15 (02) : 283 - 289
  • [9] Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models
    Liang, Jing
    Ge, Shilei
    Qu, Boyang
    Yu, Kunjie
    Liu, Fengjiao
    Yang, Haotian
    Wei, Panpan
    Li, Zhimeng
    ENERGY CONVERSION AND MANAGEMENT, 2020, 203 (203)
  • [10] Particle swarm optimization and identification of inelastic material parameters
    Vaz, M., Jr.
    Cardoso, E. L.
    Stahlschmidt, J.
    ENGINEERING COMPUTATIONS, 2013, 30 (07) : 936 - 960