Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups

被引:15
作者
Benkart, Georgia [1 ]
Halverson, Tom [2 ]
Harman, Nate [3 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Macalester Coll, Dept Math Stat & Comp Sci, St Paul, MN 55105 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Schur-Weyl duality; Partition algebra; Symmetric group; Alternating group; Stirling numbers of the second kind; Bell numbers; MODEL; REPRESENTATIONS;
D O I
10.1007/s10801-017-0748-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The partition algebra P-k (n) and the symmetric group S-n are in Schur-Weyl duality on the k-fold tensor power M-n(circle times k) of the permutation module M-n of S-n, so there is a surjection P-k (n) -> Z(k) (n) := End(Sn) (M-n(circle times k)), which is an isomorphism when n >= 2k. We prove a dimension formula for the irreducible modules of the centralizer algebra Z(k) (n) in terms of Stirling numbers of the second kind. Via Schur-Weyl duality, these dimensions equal the multiplicities of the irreducible S-n-modules in M-n(circle times k). Our dimension expressions hold for any n >= 1 and k >= 0. Our methods are based on an analog of Frobenius reciprocity that we show holds for the centralizer algebras of arbitrary finite groups and their subgroups acting on a finite-dimensional module. This enables us to generalize the above result to various analogs of the partition algebra including the centralizer algebra for the alternating group acting on M-n(circle times k) and the quasi-partition algebra corresponding to tensor powers of the reflection representation of S-n.
引用
收藏
页码:77 / 108
页数:32
相关论文
共 33 条
[1]   Combinatorial Gelfand models [J].
Adin, Ron M. ;
Postnikov, Alexander ;
Roichman, Yuval .
JOURNAL OF ALGEBRA, 2008, 320 (03) :1311-1325
[2]   A GELFAND MODEL FOR WREATH PRODUCTS [J].
Adin, Ron M. ;
Postnikov, Alexander ;
Roichman, Yuval .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 179 (01) :381-402
[3]  
[Anonymous], 1999, Enumerative Combinatorics
[4]  
[Anonymous], 2010, The on-line encyclopedia of integer sequences
[5]  
[Anonymous], 1997, Enumerative combinatorics
[6]  
Benkart G., ARXIV160506543V1
[7]  
Benkart G., EXCEPTIONAL MC UNPUB
[8]  
BENKART G, 2014, P INT C MATH SEOUL, V1, P633
[9]  
Benkart G., PARTITION ALGE UNPUB
[10]   Catalan, Motzkin, and Riordan numbers [J].
Bernhart, FR .
DISCRETE MATHEMATICS, 1999, 204 (1-3) :73-112