Predicting the capability-polar-plots for dynamic positioning systems for offshore platforms using artificial neural networks

被引:15
|
作者
Mahfouz, Ayman B. [1 ]
机构
[1] Univ Alexandria, Fac Engn, Dept Naval Architecture & Marine Engn, Alexandria, Egypt
关键词
offshore safety; artificial neural networks; aerodynamics; hydrodynamics; dynamic positioning systems (DPS); floating; production; storage and offloading (FPSO); tunnel thrusters; azimuth thrusters; marine vessels; floating production units; environmental forces; wind forces; current forces; wave drift forces; capability polar plots program (CPPP);
D O I
10.1016/j.oceaneng.2006.08.006
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
As the capability of polar plots becomes better understood, improved dynamic positioning (DP) systems are possible as the control algorithms greatly depend on the accuracy of the aerodynamic and hydrodynamic models. The measurements and estimation of the environmental disturbances have an important role in the optimal design and selection of a DP system for offshore platforms. The main objective of this work is to present a new method of predicting the Capability-Polar-Plots for offshore platforms using the combination of the artificial neural networks (NNs) and the capability polar plots program (CPPP). The estimated results from a case study for a scientific drilling vessel are presented. A trained artificial NN is designed in this work and is able to predict the maximum wind speed at which the DP thrusters are able to maintain the offshore platform in a station-keeping mode in the field site. This prediction for the maximum wind speed will be a helpful tool for DP operators in managing station-keeping for offshore platforms in an emergency situation where the automation of the DP systems is disabled. It is obvious from the obtained results that the developed technique has potential for the estimation of the capability-polar-plots for offshore platforms. This tool would be suitable for DP operators to predict the maximum wind speed and direction in a very short period of time. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1151 / 1163
页数:13
相关论文
共 50 条
  • [21] Predicting Methane Concentration in Longwall Regions Using Artificial Neural Networks
    Tutak, Magdalena
    Brodny, Jaroslaw
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019, 16 (08)
  • [22] Predicting Mammographic Breast Density Assessment Using Artificial Neural Networks
    Boujemaa, Soumaya
    Bouzekraoui, Youssef
    Bentayeb, Farida
    Iranian Journal of Medical Physics, 2024, 21 (01) : 8 - 15
  • [23] Predicting salt rejections at nanofiltration membranes using artificial neural networks
    Bowen, WR
    Jones, MG
    Welfoot, JS
    Yousef, HNS
    DESALINATION, 2000, 129 (02) : 147 - 162
  • [24] Mobile station positioning using GSM cellular phone and artificial neural networks
    Salcic, Z
    Chan, E
    WIRELESS PERSONAL COMMUNICATIONS, 2000, 14 (03) : 235 - 254
  • [25] Predicting the toxicity of complex mixtures using artificial neural networks.
    Gagne, F
    Blaise, C
    CHEMOSPHERE, 1997, 35 (06) : 1343 - 1363
  • [26] Predicting pavement condition index using artificial neural networks approach
    Issa, Amjad
    Samaneh, Haya
    Ghanim, Mohammad
    AIN SHAMS ENGINEERING JOURNAL, 2022, 13 (01)
  • [27] Advances on Rain Rate Retrieval from Satellite Platforms using Artificial Neural Networks
    Munoz, E. A.
    Di Paola, F.
    Lanfri, M. A.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (10) : 3179 - 3186
  • [28] Improving Intrusion Detection Systems Using Artificial Neural Networks
    Jasim, Yaser A.
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2018, 7 (01): : 49 - 65
  • [29] USING ARTIFICIAL NEURAL NETWORKS IN E-LEARNING SYSTEMS
    Susnea, Elena
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2010, 72 (04): : 79 - 88
  • [30] Predicting temperature profiles in producing oil wells using artificial neural networks
    Farshad, FF
    Garber, JD
    Lorde, JN
    ENGINEERING COMPUTATIONS, 2000, 17 (6-7) : 735 - 754