Predicting the capability-polar-plots for dynamic positioning systems for offshore platforms using artificial neural networks

被引:15
|
作者
Mahfouz, Ayman B. [1 ]
机构
[1] Univ Alexandria, Fac Engn, Dept Naval Architecture & Marine Engn, Alexandria, Egypt
关键词
offshore safety; artificial neural networks; aerodynamics; hydrodynamics; dynamic positioning systems (DPS); floating; production; storage and offloading (FPSO); tunnel thrusters; azimuth thrusters; marine vessels; floating production units; environmental forces; wind forces; current forces; wave drift forces; capability polar plots program (CPPP);
D O I
10.1016/j.oceaneng.2006.08.006
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
As the capability of polar plots becomes better understood, improved dynamic positioning (DP) systems are possible as the control algorithms greatly depend on the accuracy of the aerodynamic and hydrodynamic models. The measurements and estimation of the environmental disturbances have an important role in the optimal design and selection of a DP system for offshore platforms. The main objective of this work is to present a new method of predicting the Capability-Polar-Plots for offshore platforms using the combination of the artificial neural networks (NNs) and the capability polar plots program (CPPP). The estimated results from a case study for a scientific drilling vessel are presented. A trained artificial NN is designed in this work and is able to predict the maximum wind speed at which the DP thrusters are able to maintain the offshore platform in a station-keeping mode in the field site. This prediction for the maximum wind speed will be a helpful tool for DP operators in managing station-keeping for offshore platforms in an emergency situation where the automation of the DP systems is disabled. It is obvious from the obtained results that the developed technique has potential for the estimation of the capability-polar-plots for offshore platforms. This tool would be suitable for DP operators to predict the maximum wind speed and direction in a very short period of time. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1151 / 1163
页数:13
相关论文
共 50 条
  • [1] On the use of the capability polar plots program for dynamic positioning systems for marine vessels
    Mahfouz, AB
    Ei-Tahan, HW
    OCEAN ENGINEERING, 2006, 33 (8-9) : 1070 - 1089
  • [2] A Damage Identification Approach for Offshore Jacket Platforms Using Partial Modal Results and Artificial Neural Networks
    Guo, Jiamin
    Wu, Jiongliang
    Guo, Junhua
    Jiang, Zhiyu
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [3] DYNAMIC SYSTEMS MODELING USING ARTIFICIAL NEURAL NETWORKS FOR AGRICULTURAL MACHINES
    Dorokhov, A. S.
    Sibirev, A., V
    Aksenov, A. G.
    INMATEH-AGRICULTURAL ENGINEERING, 2019, 58 (02): : 63 - 74
  • [4] PREDICTING THE DYNAMIC COHESION IN DRAFTED SLIVERS AT DRAW FRAME USING ARTIFICIAL NEURAL NETWORKS
    Farooq, Assad
    TEKSTIL VE KONFEKSIYON, 2014, 24 (03): : 286 - 290
  • [5] Identification of nonlinear dynamic systems using functional link artificial neural networks
    Patra, JC
    Pal, RN
    Chatterji, BN
    Panda, G
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (02): : 254 - 262
  • [6] Predicting monthly streamflow using artificial neural networks and wavelet neural networks models
    Yilmaz, Muhammet
    Tosunoglu, Fatih
    Kaplan, Nur Huseyin
    Unes, Fatih
    Hanay, Yusuf Sinan
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 5547 - 5563
  • [7] Predicting monthly streamflow using artificial neural networks and wavelet neural networks models
    Muhammet Yilmaz
    Fatih Tosunoğlu
    Nur Hüseyin Kaplan
    Fatih Üneş
    Yusuf Sinan Hanay
    Modeling Earth Systems and Environment, 2022, 8 : 5547 - 5563
  • [8] Predicting the dynamic response of a structure using an artificial neural network
    Birky, Donovan
    Ladd, Joshua
    Guardiola, Ivan
    Young, Andrew
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (01) : 182 - 195
  • [9] Using Artificial Neural Networks for Predicting Ship Fuel Consumption
    Nguyen, Van Giao
    Rajamohan, Sakthivel
    Rudzki, Krzysztof
    Kozak, Janusz
    Sharma, Prabhakar
    Pham, Nguyen Dang Khoa
    Nguyen, Phuoc Quy Phong
    Xuan, Phuong Nguyen
    POLISH MARITIME RESEARCH, 2023, 30 (02) : 39 - 60
  • [10] Predicting wood thermal conductivity using artificial neural networks
    Avramidis, S
    Iliadis, L
    WOOD AND FIBER SCIENCE, 2005, 37 (04): : 682 - 690