Universality classes of the Kardar-Parisi-Zhang equation

被引:16
作者
Canet, L. [1 ]
Moore, M. A.
机构
[1] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
关键词
D O I
10.1103/PhysRevLett.98.200602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We reexamine mode-coupling theory for the Kardar-Parisi-Zhang equation in the strong-coupling limit and show that there exist two branches of solutions. One branch (or universality class) exists only for dimensionalities d < d(c)=2 and is similar to that found by a variety of analytic approaches, including replica symmetry breaking and Flory-Imry-Ma arguments. The second branch exists up to d(c)=4 and gives values for the dynamical exponent z similar to those of numerical studies for d >= 2.
引用
收藏
页数:4
相关论文
共 34 条
  • [1] SCALING EXPONENTS FOR KINETIC ROUGHENING IN HIGHER DIMENSIONS
    ALANISSILA, T
    HJELT, T
    KOSTERLITZ, JM
    VENALAINEN, O
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (1-2) : 207 - 225
  • [2] SELF-CONSISTENT APPROACH TO THE KARDAR-PARISI-ZHANG EQUATION
    BOUCHAUD, JP
    CATES, ME
    [J]. PHYSICAL REVIEW E, 1993, 47 (03) : R1455 - R1458
  • [3] Nonperturbative renormalization of the Kardar-Parisi-Zhang growth dynamics
    Castellano, C
    Marsili, M
    Pietronero, L
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (16) : 3527 - 3530
  • [4] Scale invariant dynamics of surface growth
    Castellano, C
    Marsili, M
    Muñoz, MA
    Pietronero, L
    [J]. PHYSICAL REVIEW E, 1999, 59 (06): : 6460 - 6475
  • [5] A POLYMER IN A FRACTAL PORE-SPACE
    CHEN, Y
    GUYER, RA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (22): : 4173 - 4181
  • [6] Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension
    Colaiori, F
    Moore, MA
    [J]. PHYSICAL REVIEW E, 2002, 65 (01): : 1 - 017105
  • [7] Stretched exponential relaxation in the mode-coupling theory for the Kardar-Parisi-Zhang equation
    Colaiori, F
    Moore, MA
    [J]. PHYSICAL REVIEW E, 2001, 63 (05):
  • [8] Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation
    Colaiori, F
    Moore, MA
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (18) : 3946 - 3949
  • [9] GENERALIZATIONS OF THE KARDAR-PARISI-ZHANG EQUATION
    DOHERTY, JP
    MOORE, MA
    KIM, JM
    BRAY, AJ
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (13) : 2041 - 2044
  • [10] Localized growth modes, dynamic textures, and upper critical dimension for the Kardar-Parisi-Zhang equation in the weak-noise limit
    Fogedby, HC
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (19)