Universality classes of the Kardar-Parisi-Zhang equation

被引:17
作者
Canet, L. [1 ]
Moore, M. A.
机构
[1] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
关键词
D O I
10.1103/PhysRevLett.98.200602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We reexamine mode-coupling theory for the Kardar-Parisi-Zhang equation in the strong-coupling limit and show that there exist two branches of solutions. One branch (or universality class) exists only for dimensionalities d < d(c)=2 and is similar to that found by a variety of analytic approaches, including replica symmetry breaking and Flory-Imry-Ma arguments. The second branch exists up to d(c)=4 and gives values for the dynamical exponent z similar to those of numerical studies for d >= 2.
引用
收藏
页数:4
相关论文
共 34 条
[1]   SCALING EXPONENTS FOR KINETIC ROUGHENING IN HIGHER DIMENSIONS [J].
ALANISSILA, T ;
HJELT, T ;
KOSTERLITZ, JM ;
VENALAINEN, O .
JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (1-2) :207-225
[2]   SELF-CONSISTENT APPROACH TO THE KARDAR-PARISI-ZHANG EQUATION [J].
BOUCHAUD, JP ;
CATES, ME .
PHYSICAL REVIEW E, 1993, 47 (03) :R1455-R1458
[3]   Nonperturbative renormalization of the Kardar-Parisi-Zhang growth dynamics [J].
Castellano, C ;
Marsili, M ;
Pietronero, L .
PHYSICAL REVIEW LETTERS, 1998, 80 (16) :3527-3530
[4]   Scale invariant dynamics of surface growth [J].
Castellano, C ;
Marsili, M ;
Muñoz, MA ;
Pietronero, L .
PHYSICAL REVIEW E, 1999, 59 (06) :6460-6475
[5]   A POLYMER IN A FRACTAL PORE-SPACE [J].
CHEN, Y ;
GUYER, RA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (22) :4173-4181
[6]   Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension [J].
Colaiori, F ;
Moore, MA .
PHYSICAL REVIEW E, 2002, 65 (01) :1-017105
[7]   Stretched exponential relaxation in the mode-coupling theory for the Kardar-Parisi-Zhang equation [J].
Colaiori, F ;
Moore, MA .
PHYSICAL REVIEW E, 2001, 63 (05)
[8]   Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation [J].
Colaiori, F ;
Moore, MA .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :3946-3949
[9]   GENERALIZATIONS OF THE KARDAR-PARISI-ZHANG EQUATION [J].
DOHERTY, JP ;
MOORE, MA ;
KIM, JM ;
BRAY, AJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (13) :2041-2044
[10]   Localized growth modes, dynamic textures, and upper critical dimension for the Kardar-Parisi-Zhang equation in the weak-noise limit [J].
Fogedby, HC .
PHYSICAL REVIEW LETTERS, 2005, 94 (19)