On rational and hypergeometric solutions of linear ordinary difference equations in ΠΣ*-field extensions

被引:20
作者
Abramov, Sergei A. [1 ]
Bronstein, Manuel
Petkovsek, Marko [2 ,3 ]
Schneider, Carsten [4 ]
机构
[1] Russian Acad Sci, Dorodnicyn Comp Ctr, Fed Res Ctr Comp Sci & Control, Moscow, Russia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Johannes Kepler Univ Linz, Res Inst Symbol Computat RISC, Linz, Austria
基金
俄罗斯基础研究基金会;
关键词
Difference fields; Rational solutions; Hypergeometric solutions; SUMMATION; REPRESENTATIONS; INTEGRATION; SUMS;
D O I
10.1016/j.jsc.2021.01.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a complete algorithm that computes all hypergeometric solutions of homogeneous linear difference equations and rational solutions of parameterized linear difference equations in the setting of Pi Sigma*-fields. More generally, we provide a flexible framework for a big class of difference fields that are built by a tower of Pi Sigma*-field extensions over a difference field that enjoys certain algorithmic properties. As a consequence one can compute all solutions in terms of indefinite nested sums and products that arise within the components of a parameterized linear difference equation, and one can find all hypergeometric solutions of a homogeneous linear difference equation that are defined over the arising sums and products. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 66
页数:44
相关论文
共 58 条
[1]   The two-mass contribution to the three-loop gluonic operator matrix element Agg, Q(3) [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
Goedicke, A. ;
Schneider, C. ;
Schoenwald, K. .
NUCLEAR PHYSICS B, 2018, 932 :129-240
[2]  
Abramov S. A., 1995, Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC '95, P285, DOI 10.1145/220346.220383
[3]  
Abramov S. A., 1994, ISSAC'94. Proceedings of the International Symposium on Symbolic and Algebraic Computation, P169, DOI 10.1145/190347.190412
[4]   Polynomial ring automorphisms, rational (w, σ)-canonical forms, and the assignment problem [J].
Abramov, S. A. ;
Petkovsek, M. .
JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (06) :684-708
[5]  
Abramov S.A., 1989, Moscow Univ. Comput. Math. Cybernet., V3, P63
[6]  
Abramov S.A., 2000, P ISSAC 00
[7]  
Abramov S.A., 2020, ARXIV200504944CSSC
[8]   In memory of Manuel Bronstein [J].
Abramov, SA .
PROGRAMMING AND COMPUTER SOFTWARE, 2006, 32 (01) :56-58
[9]   q-hypergeometric solutions of q-difference equations [J].
Abramov, SA ;
Paule, P ;
Petkovsek, M .
DISCRETE MATHEMATICS, 1998, 180 (1-3) :3-22
[10]   RATIONAL SOLUTIONS OF LINEAR-DIFFERENTIAL AND DIFFERENCE-EQUATIONS WITH POLYNOMIAL COEFFICIENTS [J].
ABRAMOV, SA .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (06) :7-12