FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS FOR DERIVATIVES OF MULTIVARIATE CURVES

被引:4
|
作者
Grith, Maria [1 ]
Wagner, Heiko [2 ]
Haerdle, Wolfgang K. [2 ,3 ,4 ,5 ]
Kneip, Alois [2 ]
机构
[1] Erasmus Univ, Erasmus Sch Econ, Econometr Inst, Burg Oudlaan 50, NL-3062 PA Rotterdam, Netherlands
[2] Univ Bonn, Inst Financial Econ & Stat, Dept Econ, Adenauerallee 24-26, D-53113 Bonn, Germany
[3] Humboldt Univ, Sch Business & Econ, Ladislaus von Bortkiewicz Chair Stat, Spandauer Stra 1, D-10178 Berlin, Germany
[4] Humboldt Univ, Sch Business & Econ, CASE, Spandauer Stra 1, D-10178 Berlin, Germany
[5] Singapore Management Univ, Sim Kee Boon Inst Financial Econ, 81 Victoria St, Singapore 188065, Singapore
关键词
Derivatives; dual method; functional principal component analysis; multivariate functions; option prices; state price densities; VARIANCE-ESTIMATION; REGRESSION; VOLATILITY; BANDWIDTH; KERNELS; MODEL; SHAPE;
D O I
10.5705/ss.202017.0199
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose two methods based on the functional principal component analysis (FPCA) to estimate smooth derivatives for a sample of observed curves with a multidimensional domain. We apply the eigendecomposition to a) the dual covariance matrix of the derivatives; b) the dual covariance matrix of the observed curves, and take derivatives of their eigenfunctions. To handle noisy and discrete observations, we rely on local polynomial regression. We show that if the curves are contained in a finite-dimensional function space, the second method performs better asymptotically. We apply our methodology in simulations and an empirical study of option implied state price density surfaces. Using call data for the DAX 30 stock index between 2002 and 2011, we identify three components that are interpreted as volatility, skewness and tail factors, and we find evidence of term structure variation.
引用
收藏
页码:2469 / 2496
页数:28
相关论文
共 50 条
  • [31] Functional nonlinear principal component analysis
    Zhong, Qingzhi
    Song, Xinyuan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 209
  • [32] Local Functional Principal Component Analysis
    Mas, Andre
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (01) : 135 - 167
  • [33] Longitudinal functional principal component analysis
    Greven, Sonja
    Crainiceanu, Ciprian
    Caffo, Brian
    Reich, Daniel
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1022 - 1054
  • [34] Longitudinal Functional Principal Component Analysis
    Greven, Sonja
    Crainiceanu, Ciprian
    Caffo, Brian
    Reich, Daniel
    RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 149 - 154
  • [35] Local Functional Principal Component Analysis
    André Mas
    Complex Analysis and Operator Theory, 2008, 2 : 135 - 167
  • [36] Interpretable Functional Principal Component Analysis
    Lin, Zhenhua
    Wang, Liangliang
    Cao, Jiguo
    BIOMETRICS, 2016, 72 (03) : 846 - 854
  • [37] Structured Functional Principal Component Analysis
    Shou, Haochang
    Zipunnikov, Vadim
    Crainiceanu, Ciprian M.
    Greven, Sonja
    BIOMETRICS, 2015, 71 (01) : 247 - 257
  • [38] Functional quantile principal component analysis
    Mendez-Civieta, Alvaro
    Wei, Ying
    Diaz, Keith M.
    Goldsmith, Jeff
    BIOSTATISTICS, 2024,
  • [39] A survey of functional principal component analysis
    Han Lin Shang
    AStA Advances in Statistical Analysis, 2014, 98 : 121 - 142
  • [40] Supervised functional principal component analysis
    Yunlong Nie
    Liangliang Wang
    Baisen Liu
    Jiguo Cao
    Statistics and Computing, 2018, 28 : 713 - 723