Optimization of laser deposited silver nanoparticle substrates for surface-enhanced raman spectroscopy

被引:4
作者
Paul, Tristan C. [1 ,2 ]
Hagen, Guy M. [2 ]
Pinchuk, Anatoliy O. [1 ,2 ]
McNear, Kelly L. [2 ]
机构
[1] Univ Colorado, Dept Phys & Energy Sci, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
[2] UCCS BioFrontiers Ctr, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
基金
美国国家卫生研究院;
关键词
SERS; nanoparticles; laser deposition; SERS;
D O I
10.1088/1361-6528/ac622e
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Creating sensitive and reproducible substrates for surface-enhanced Raman spectroscopy (SERS) has been a challenge in recent years. While SERS offers significant benefits over traditional Raman spectroscopy, certain hindrances have limited their commercial use, especially in settings where low limits of detection are necessary. We studied a variety of laser-deposited silver microstructured SERS substrates with different morphology as a means to optimize analyte detection. We found that using a 405 nm laser to deposit lines of silver nanoparticles (AgNPS) from a 2 mM silver nitrate and sodium citrate solution offered not only the best enhancement, but also the most consistent and reproducible substrates. We also found that the probability of deposition by laser was wavelength dependent and that longer wavelengths were less likely to deposit than shorter wavelengths. This work offers a better understanding of the laser deposition process as well as how substrate shape and structure effect SERS signals.
引用
收藏
页数:9
相关论文
共 24 条
[11]  
Le Ru EC, 2009, PRINCIPLES OF SURFACE-ENHANCED RAMAN SPECTROSCOPY: AND RELATED PLASMONIC EFFECTS, P29, DOI 10.1016/B978-0-444-52779-0.00008-8
[12]   Single molecule detection from a large-scale SERS-active Au79Ag21 substrate [J].
Liu, Hongwen ;
Zhang, Ling ;
Lang, Xingyou ;
Yamaguchi, Yoshinori ;
Iwasaki, Hiroshi ;
Inouye, Yasushi ;
Xue, Qikun ;
Chen, Mingwei .
SCIENTIFIC REPORTS, 2011, 1
[13]   Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments [J].
Liu, Ye ;
Zhou, Fei ;
Wang, Hongcheng ;
Huang, Xiaoyuan ;
Ling, Dongxiong .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 299
[14]   Atmospheric oxidation and carbon contamination of silver and its effect on surface-enhanced Raman spectroscopy (SERS) [J].
Matikainen, Antti ;
Nuutinen, Tarmo ;
Itkonen, Tommi ;
Heinilehto, Santtu ;
Puustinen, Jarkko ;
Hiltunen, Jussi ;
Lappalainen, Jyrki ;
Karioja, Pentti ;
Vahimaa, Pasi .
SCIENTIFIC REPORTS, 2016, 6
[15]   Review of SERS Substrates for Chemical Sensing [J].
Mosier-Boss, Pamela A. .
NANOMATERIALS, 2017, 7 (06)
[16]   Silver melamine thin film as a flexible platform for SERS analysis [J].
Nenashkina, Anastasia ;
Koltsov, Semyon ;
Orlova, Olga Yu ;
Nikitina, Anna A. ;
Kirilenko, Demid A. ;
Andreeva, Daria, V ;
Blanco-Formoso, Maria ;
Pazos-Perez, Nicolas ;
Alvarez-Puebla, Ramon ;
Skorb, Ekaterina, V .
NANOSCALE, 2021, 13 (15) :7375-7380
[17]   ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging [J].
Ovesny, Martin ;
Krizek, Pavel ;
Borkovec, Josef ;
Svindrych, Zdenek K. ;
Hagen, Guy M. .
BIOINFORMATICS, 2014, 30 (16) :2389-2390
[18]   Identifying Pigment Mixtures in Art Using SERS: A Treatment Flowchart Approach [J].
Roh, Joo Yeon ;
Matecki, Mary K. ;
Svoboda, Shelley A. ;
Wustholz, Kristin L. .
ANALYTICAL CHEMISTRY, 2016, 88 (04) :2028-2032
[19]   Particle-substrate interactions in the laser deposition process [J].
Savchuk, Viktoriia V. ;
Jenkins, Nicholas W. ;
Pinchuk, Anatoliy O. .
NANOTECHNOLOGY, 2020, 31 (24)
[20]   Optimization of Nanoparticle-Based SERS Substrates through Large Scale Realistic Simulations [J].
Solis, Diego M. ;
Taboada, Jose M. ;
Obelleiro, Fernando ;
Liz-Marzan, Luis M. ;
Javier Garcia de Abajo, F. .
ACS PHOTONICS, 2017, 4 (02) :329-337