Path Planning of Mobile Robot Based on Improved Particle Swarm

被引:1
|
作者
Qi, Yuming [1 ]
Xie, Bing [1 ,2 ]
Huang, Xiaochen [1 ]
Yuan, Miao [1 ]
Zhu, Chen [1 ]
机构
[1] Tianjin Univ Technol & Educ, Inst Robot & Intelligent Equipment, Tianjin 300222, Peoples R China
[2] Tianjin Artificial Intelligence Innovat Ctr, Tianjin 300222, Peoples R China
来源
2020 CHINESE AUTOMATION CONGRESS (CAC 2020) | 2020年
关键词
Path planning; Particle swarm optimization; Ant colony algorithm; Fusion algorithm; Mobile robot;
D O I
10.1109/CAC51589.2020.9326521
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Path planning is one of the key technologies of robot navigation and control, in path planning, there are some problems in the application of ant colony algorithm, such as slow convergence speed, poor optimization results and incomplete search. In order to improve the mobile robot's ability to search the optimal path to the target point in the global static environment. In this paper, a double improved fusion algorithm of particle swarm optimization and ant colony algorithm is proposed to solve the path planning problem. Firstly, the occupied grid map is constructed based on visual slam technology of depth camera in static environment; Secondly, the improved particle swarm optimization -ant colony algorithm is used for path planning in the grid map: The sub optimal solution is obtained by using the advantages of global search ability and search speed of improved particle swarm optimization, which is transformed into the increment of initial pheromone distribution in the improved ant colony algorithm, and the exact solution of the path problem is solved by using the positive feedback mechanism of the improved ant colony algorithm; Finally, a robot experimental platform is built to verify the effectiveness and practicability of the improved particle swarm optimization and ant colony fusion algorithm. The experimental results show that the fusion algorithm has a certain guiding role for mobile robot path planning.
引用
收藏
页码:6937 / 6944
页数:8
相关论文
共 50 条
  • [21] Mobile Robot Path Planning Based on Improved Ant Colony Algorithm
    Su, Qinggang
    Yu, Wangwang
    Liu, Jun
    2021 ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE (ACCTCS 2021), 2021, : 220 - 224
  • [22] A New Method for Mobile Robot Path Planning based on Particle Swarm Optimization algorithm
    Qiang, Ning
    Gao, Jie
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS, MECHATRONICS AND CIVIL ENGINEERING (ICAMMCE 2017), 2017, 121 : 95 - 98
  • [23] Research on Path Planning Method of Mobile Robot Based on Improved Spider Swarm Algorithm
    Chen, Yanhua
    Yang, Bei
    Liu, Fenggang
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND APPLICATIONS, ICMVA 2022, 2022, : 123 - 128
  • [24] Research on Autonomous Moving Robot Path Planning Based on Improved Particle Swarm Optimization
    Nie, Zhibin
    Yang, Xiaobing
    Gao, Shihong
    Zheng, Yan
    Wang, Jianhui
    Wang, Zhanshan
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2532 - 2536
  • [25] A Hybrid Path planning approach combining Artificial Potential Field and Particle Swarm Optimization for Mobile Robot
    Shankar, Manny
    Sushnigdha, Gangireddy
    IFAC PAPERSONLINE, 2022, 55 (22): : 242 - 247
  • [26] An improved particle filter for mobile robot localization based on particle swarm optimization
    Zhang, Qi-bin
    Wang, Peng
    Chen, Zong-hai
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 135 : 181 - 193
  • [27] Research on Path Planning of Mobile Robot Based on Improved A* Algorithm
    Yin, Jiaman
    Li, Kairong
    Zhu, Zhipeng
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2020, 2020, 11574
  • [28] Robot Path Planning Based on Generative Learning Particle Swarm Optimization
    Wang, Lu
    Liu, Lulu
    Lu, Xiaoxia
    IEEE ACCESS, 2024, 12 : 130063 - 130072
  • [29] Path planning of mobile robot based on Improved RRT Algorithm
    Yang Ying
    Zhang Li
    Guo Ruihong
    Han Yisa
    Tan Haiyan
    Meng Junxi
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4741 - 4746
  • [30] Mobile robot path planning based on improved RRT* algorithm
    Zhang W.
    Fu S.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (01): : 31 - 36