Path Planning of Mobile Robot Based on Improved Particle Swarm

被引:1
|
作者
Qi, Yuming [1 ]
Xie, Bing [1 ,2 ]
Huang, Xiaochen [1 ]
Yuan, Miao [1 ]
Zhu, Chen [1 ]
机构
[1] Tianjin Univ Technol & Educ, Inst Robot & Intelligent Equipment, Tianjin 300222, Peoples R China
[2] Tianjin Artificial Intelligence Innovat Ctr, Tianjin 300222, Peoples R China
来源
2020 CHINESE AUTOMATION CONGRESS (CAC 2020) | 2020年
关键词
Path planning; Particle swarm optimization; Ant colony algorithm; Fusion algorithm; Mobile robot;
D O I
10.1109/CAC51589.2020.9326521
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Path planning is one of the key technologies of robot navigation and control, in path planning, there are some problems in the application of ant colony algorithm, such as slow convergence speed, poor optimization results and incomplete search. In order to improve the mobile robot's ability to search the optimal path to the target point in the global static environment. In this paper, a double improved fusion algorithm of particle swarm optimization and ant colony algorithm is proposed to solve the path planning problem. Firstly, the occupied grid map is constructed based on visual slam technology of depth camera in static environment; Secondly, the improved particle swarm optimization -ant colony algorithm is used for path planning in the grid map: The sub optimal solution is obtained by using the advantages of global search ability and search speed of improved particle swarm optimization, which is transformed into the increment of initial pheromone distribution in the improved ant colony algorithm, and the exact solution of the path problem is solved by using the positive feedback mechanism of the improved ant colony algorithm; Finally, a robot experimental platform is built to verify the effectiveness and practicability of the improved particle swarm optimization and ant colony fusion algorithm. The experimental results show that the fusion algorithm has a certain guiding role for mobile robot path planning.
引用
收藏
页码:6937 / 6944
页数:8
相关论文
共 50 条
  • [1] Mobile Robot Path Planning Based on Improved Localized Particle Swarm Optimization
    Zhang, Lin
    Zhang, Yingjie
    Li, Yangfan
    IEEE SENSORS JOURNAL, 2021, 21 (05) : 6962 - 6972
  • [2] Mobile Robot Path Planning Based on Improved Particle Swarm Optimization
    Han, Yisa
    Zhang, Li
    Tan, Haiyan
    Xue, Xulu
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4354 - 4358
  • [3] Safe path planning of mobile robot based on improved particle swarm optimization
    Guo, Bingbing
    Sun, Yuan
    Chen, Yiyang
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024,
  • [4] Global Path Planning for Mobile Robot Based on Improved Dijkstra Algorithm and Particle Swarm Optimization
    Chen, Naichao
    He, Ping
    Rui, Xianming
    ADVANCED MECHANICAL ENGINEERING, PTS 1 AND 2, 2010, 26-28 : 909 - +
  • [5] A Mobile Robot Path Planning Method Based on Dynamic Multipopulation Particle Swarm Optimization
    Zhang, Yunjie
    Li, Ning
    Chen, Yadong
    Yang, Zhenjian
    Liu, Yue
    JOURNAL OF ROBOTICS, 2024, 2024
  • [6] Path Planning For Mobile Robot Based on Particle Swarm Optimization
    Li Guangshun
    Shi Hongbo
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 3290 - 3294
  • [7] Joint Grid Network and Improved Particle Swarm Optimization for Path Planning of Mobile Robot
    Luo, Xiaoyuan
    Wang, Jiange
    Li, Xiaolei
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 8304 - 8309
  • [8] Path planning for mobile robot using the particle swarm optimization with mutation operator
    Qin, YQ
    Sun, DA
    Li, N
    Cen, YG
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2473 - 2478
  • [9] Path Planning of Mobile Robots Based on an Improved Particle Swarm Optimization Algorithm
    Yuan, Qingni
    Sun, Ruitong
    Du, Xiaoying
    PROCESSES, 2023, 11 (01)
  • [10] Path Planning of Mobile Robot Based on Improved Wolf Swarm Algorithms
    Chen, Xu
    Zhang, Yi
    Li, Kui
    Huang, Baiyue
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 359 - 364