Investigation of Electrocatalysts for Selective Reduction of CO2 to CO: Monitoring the Reaction Products by on line Mass Spectrometry and Gas Chromatography

被引:12
作者
Camilo, Mariana R. [1 ]
Silva, Wanderson O. [1 ]
Lima, Fabio H. B. [1 ]
机构
[1] Univ Sao Paulo, Inst Quim Sao Carlos, CP 780, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
CO2 electrochemical reduction; on line DEMS; in line GC; CO formation; Cu4Sn/C alloy; CARBON-DIOXIDE REDUCTION; ELECTROCHEMICAL REDUCTION; METAL-ELECTRODES; FUEL-CELLS; SHELL NANOPARTICLES; AQUEOUS CO2; CATALYSTS; COPPER; ELECTROREDUCTION; METHANE;
D O I
10.21577/0103-5053.20170061
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The carbon dioxide electrocatalytic reduction is central for the development of regenerative cycles of electrochemical energy conversion and storage. Herein, the gaseous products of the CO2 electroreduction were monitored by using an electrochemical cell on line coupled to a differential electrochemical mass spectrometer (DEMS), aiming at searching for electrocatalysts with high selectivity for CO formation. The results showed that, among the studied materials, the Cu4Sn/C alloy nanoparticles were stable during potentiostatic polarizations as revealed by in situ X-ray absorption spectroscopy (XAS), and the on line DEMS measurements showed the production of CO, suppression of methane and ethylene formations, and diminishing of the hydrogen evolution reaction, in relation to that on pure Cu2O-Cu/C. The faradaic efficiencies for CO formation were 13 and 23% for Cu4Sn/C and Au/C (a known electrocatalyst for CO), respectively, determined by experiments of in line gas chromatography (GC). The selectivity of Cu4Sn/C for CO formation was ascribed to the role of Sn atoms on stabilizing adsorbed HCOO intermediates, and hindering further hydrogenation, letting CO free for desorption. These results are expected to be used as a guide for further development of electrocatalysts with a fine-tuning of composition for increasing the faradaic efficiency of CO2 electroreduction to CO.
引用
收藏
页码:1803 / 1815
页数:13
相关论文
共 70 条
[1]  
Aresta M., 2010, CARBON DIOXIDE CHEM
[2]   Differential electrochemical mass spectrometry [J].
Baltruschat, H .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2004, 15 (12) :1693-1706
[3]   Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy [J].
Baruch, Maor F. ;
Pander, James E., III ;
White, James L. ;
Bocarsly, Andrew B. .
ACS CATALYSIS, 2015, 5 (05) :3148-3156
[4]   CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles [J].
Baturina, Olga A. ;
Lu, Qin ;
Padilla, Monica A. ;
Xin, Le ;
Li, Wenzhen ;
Serov, Alexey ;
Artyushkova, Kateryna ;
Atanassov, Plamen ;
Xu, Feng ;
Epshteyn, Albert ;
Brintlinger, Todd ;
Schuette, Mike ;
Collins, Greg E. .
ACS CATALYSIS, 2014, 4 (10) :3682-3695
[5]   Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals [J].
Chen, Chung Shou ;
Handoko, Albertus D. ;
Wan, Jane Hui ;
Ma, Liang ;
Ren, Dan ;
Yeo, Boon Siang .
CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (01) :161-168
[6]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[7]   Oxidative conversion of methane to syngas over LaNiO3 perovskite with or without simultaneous steam and CO2 reforming reactions: Influence of partial substitution of La and Ni [J].
Choudhary, VR ;
Uphade, BS ;
Belhekar, AA .
JOURNAL OF CATALYSIS, 1996, 163 (02) :312-318
[8]   Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO2 [J].
Clark, Ezra L. ;
Singh, Meenesh R. ;
Kwon, Youngkook ;
Bell, Alexis T. .
ANALYTICAL CHEMISTRY, 2015, 87 (15) :8013-8020
[9]   Pt-rare earth catalysts for ethanol electrooxidation: modification of polyol synthesis [J].
Corradini, P. G. ;
Santos, N. A. ;
Silva, G. C. ;
Perez, J. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (09) :2581-2587
[10]   Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature [J].
Delacourt, Charles ;
Ridgway, Paul L. ;
Kerr, John B. ;
Newman, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) :B42-B49