Structured crowdsourcing enables convolutional segmentation of histology images

被引:155
作者
Amgad, Mohamed [1 ]
Elfandy, Habiba [2 ]
Hussein, Hagar [3 ]
Atteya, Lamees A. [4 ]
Elsebaie, Mai A. T. [5 ]
Elnasr, Lamia S. Abo [6 ]
Sakr, Rokia A. [6 ]
Salem, Hazem S. E. [5 ]
Ismail, Ahmed F. [7 ]
Saad, Anas M. [5 ]
Ahmed, Joumana [3 ]
Elsebaie, Maha A. T. [5 ]
Rahman, Mustafijur [8 ]
Ruhban, Inas A. [9 ]
Elgazar, Nada M. [10 ]
Alagha, Yahya [3 ]
Osman, Mohamed H. [11 ]
Alhusseiny, Ahmed M. [10 ]
Khalaf, Mariam M. [12 ]
Younes, Abo-Alela F. [5 ]
Abdulkarim, Ali [3 ]
Younes, Duaa M. [5 ]
Gadallah, Ahmed M. [5 ]
Elkashash, Ahmad M. [3 ]
Fala, Salma Y. [13 ]
Zaki, Basma M. [13 ]
Beezley, Jonathan [14 ]
Chittajallu, Deepak R. [14 ]
Manthey, David [14 ]
Gutman, David A. [15 ]
Cooper, Lee A. D. [1 ,16 ]
机构
[1] Emory Univ, Dept Biomed Informat, Sch Med, Atlanta, GA 30322 USA
[2] Cairo Univ, Dept Pathol, Natl Canc Inst, Cairo 12613, Egypt
[3] Cairo Univ, Dept Med, Cairo 12613, Egypt
[4] Egyptian Minist Hlth, Cairo 11514, Egypt
[5] Ain Shams Univ, Dept Med, Cairo 11566, Egypt
[6] Menoufia Univ, Dept Med, Menoufia 32511, Egypt
[7] Alexandria Univ, Med Res Inst, Dept Pathol, Alexandria 21131, Egypt
[8] Chittagong Univ, Dept Med, Chittagong 4331, Bangladesh
[9] Damascus Univ, Dept Med, Damascus 97089, Syria
[10] Mansoura Univ, Dept Med, Mansoura 35511, Egypt
[11] Zagazig Univ, Dept Med, Zagazig 44511, Egypt
[12] Batterjee Med Coll, Dept Med, Jeddah 21442, Saudi Arabia
[13] Suez Canal Univ, Dept Med, Ismailia 41523, Egypt
[14] Kitware Inc, Clifton Pk, NY 12065 USA
[15] Emory Univ, Sch Med, Dept Neurol, Atlanta, GA 30322 USA
[16] Emory Univ, Dept Biomed Engn, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
DIGITAL SLIDE ARCHIVE;
D O I
10.1093/bioinformatics/btz083
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images. Results: We recruited 25 participants, ranging in experience from senior pathologists to medical students, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Interparticipant discordance was systematically evaluated, revealing low discordance for tumor and stroma, and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by senior participants enabled the generation and curation of 20 000+ annotated tissue regions. Fully convolutional networks trained using these annotations were highly accurate (mean AUC=0.945), and the scale of annotation data provided notable improvements in image classification accuracy.
引用
收藏
页码:3461 / 3467
页数:7
相关论文
共 12 条
  • [1] Alialy Roshanak, 2018, J Pathol Inform, V9, P2, DOI 10.4103/jpi.jpi_65_17
  • [2] Fouad YA, 2017, AM J CANCER RES, V7, P1016
  • [3] The Digital Slide Archive: A Software Platform for Management, Integration, and Analysis of Histology for Cancer Research
    Gutman, David A.
    Khalilia, Mohammed
    Lee, Sanghoon
    Nalisnik, Michael
    Mullen, Zach
    Beezley, Jonathan
    Chittajallu, Deepak R.
    Manthey, David
    Cooper, Lee A. D.
    [J]. CANCER RESEARCH, 2017, 77 (21) : E75 - E78
  • [4] Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data
    Gutman, David A.
    Cobb, Jake
    Somanna, Dhananjaya
    Park, Yuna
    Wang, Fusheng
    Kurc, Tahsin
    Saltz, Joel H.
    Brat, Daniel J.
    Cooper, Lee A. D.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (06) : 1091 - 1098
  • [5] Quanti.us: a tool for rapid, flexible, crowd-based annotation of images
    Hughes, Alex J.
    Mornin, Joseph D.
    Biswas, Sujoy K.
    Beck, Lauren E.
    Bauer, David P.
    Raj, Arjun
    Bianco, Simone
    Gartner, Zev J.
    [J]. NATURE METHODS, 2018, 15 (08) : 587 - +
  • [6] Irshad H, 2015, BIOCOMPUT-PAC SYM, P294
  • [7] Crowdsourcing scoring of immunohistochemistry images: Evaluating Performance of the Crowd and an Automated Computational Method
    Irshad, Humayun
    Oh, Eun-Yeong
    Schmolze, Daniel
    Quintana, Liza M.
    Collins, Laura
    Tamimi, Rulla M.
    Beck, Andrew H.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Crowdsourcing in Computer Vision
    Kovashka, Adriana
    Russakovsky, Olga
    Li Fei-Fei
    Grauman, Kristen
    [J]. FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION, 2014, 10 (03): : I - 243
  • [9] Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
  • [10] Features of triple-negative breast cancer: Analysis of 38,813 cases from the national cancer database
    Plasilova, Magdalena L.
    Hayse, Brandon
    Killelea, Brigid K.
    Horowitz, Nina R.
    Chagpar, Anees B.
    Lannin, Donald R.
    [J]. MEDICINE, 2016, 95 (35)