Outer-approximation algorithms for nonsmooth convex MINLP problems

被引:5
作者
Delfino, A. [1 ]
de Oliveira, W. [2 ]
机构
[1] UTFPR Univ Tecnol Fed Parana, DAMAT Math Dept, Pato Branco, Brazil
[2] PSL Res Univ, CMA, MINES ParisTech, Sophia Antipolis, France
关键词
Mixed-integer programming; nonsmooth optimization; chance-constrained programming; PROXIMAL BUNDLE METHODS; CUTTING-PLANE METHOD; MIXED-INTEGER; OPTIMIZATION;
D O I
10.1080/02331934.2018.1434173
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we combine outer-approximation (OA) and bundle method algorithms for dealingwithmixed-integer non-linear programming (MINLP) problems with nonsmooth convex objective and constraint functions. As the convergence analysis of OA methods relies strongly on the differentiability of the involved functions, OA algorithms may fail to solve general nonsmooth convex MINLP problems. In order to obtain OA algorithms that are convergent regardless the structure of the convex functions, we solve the underlying OA's non-linear subproblems by a specialized bundle method that provides necessary information to cut off previously visited (non-optimal) integer points. This property is crucial for proving (finite) convergence of OA algorithms. We illustrate the numerical performance of the given proposal on a class of hybrid robust and chanceconstrained problems that involve a random variable with finite support.
引用
收藏
页码:797 / 819
页数:23
相关论文
共 38 条
  • [1] [Anonymous], 1996, GRUNDLEHREN MATH WIS
  • [2] [Anonymous], 2014, Introduction to Nonsmooth Optimization
  • [3] Mixed-integer nonlinear optimization
    Belotti, Pietro
    Kirches, Christian
    Leyffer, Sven
    Linderoth, Jeff
    Luedtke, James
    Mahajan, Ashutosh
    [J]. ACTA NUMERICA, 2013, 22 : 1 - 131
  • [4] Partitioning procedures for solving mixed-variables programming problems
    Benders, J. F.
    [J]. COMPUTATIONAL MANAGEMENT SCIENCE, 2005, 2 (01) : 3 - 19
  • [5] Theory and Applications of Robust Optimization
    Bertsimas, Dimitris
    Brown, David B.
    Caramanis, Constantine
    [J]. SIAM REVIEW, 2011, 53 (03) : 464 - 501
  • [6] An algorithmic framework for convex mixed integer nonlinear programs
    Bonami, Pierre
    Biegler, Lorenz T.
    Conna, Andrew R.
    Cornuejols, Gerard
    Grossmann, Ignacio E.
    Laird, Carl D.
    Lee, Jon
    Lodi, Andrea
    Margot, Francois
    Sawaya, Nicolas
    Wachter, Andreas
    [J]. DISCRETE OPTIMIZATION, 2008, 5 (02) : 186 - 204
  • [7] Bonnans JF, 2006, NUMERICAL OPTIMIZATI, V2nd, DOI 10.1007/978-3-662-05078-1
  • [8] A convex mathematical program for pump scheduling in a class of branched water networks
    Bonvin, Gratien
    Demassey, Sophie
    Le Pape, Claude
    Maizi, Nadia
    Mazauric, Vincent
    Samperio, Alfredo
    [J]. APPLIED ENERGY, 2017, 185 : 1702 - 1711
  • [9] Regularized optimization methods for convex MINLP problems
    de Oliveira, Welington
    [J]. TOP, 2016, 24 (03) : 665 - 692
  • [10] A doubly stabilized bundle method for nonsmooth convex optimization
    de Oliveira, Welington
    Solodov, Mikhail
    [J]. MATHEMATICAL PROGRAMMING, 2016, 156 (1-2) : 125 - 159