Full effects of land use change in the representative concentration pathways

被引:36
作者
Davies-Barnard, T. [1 ,2 ,4 ]
Valdes, P. J. [1 ,2 ]
Singarayer, J. S. [3 ]
Pacifico, F. M. [4 ]
Jones, C. D. [5 ]
机构
[1] Univ Bristol, Cabot Inst, Bristol BS8 1SS, Avon, England
[2] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England
[3] Dept Meteorol, Reading, Berks, England
[4] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QE, Devon, England
[5] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England
基金
英国自然环境研究理事会;
关键词
earth system model; land use change; representative concentration pathways; CLIMATE-CHANGE; CARBON; IMPACTS; VEGETATION; FEEDBACKS; BENEFITS; FORESTS;
D O I
10.1088/1748-9326/9/11/114014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Future land use change (LUC) is an important component of the IPCC representative concentration pathways (RCPs), but in these scenarios' radiative forcing targets the climate impact of LUC only includes greenhouse gases. However, climate effects due to physical changes of the land surface can be as large. Here we show the critical importance of including non-carbon impacts of LUC when considering the RCPs. Using an ensemble of climate model simulations with and without LUC, we show that the net climate effect is very different from the carbon-only effect. Despite opposite signs of LUC, all the RCPs assessed here have a small net warming from LUC because of varying biogeophysical effects, and in RCP4.5 the warming is outside of the expected variability. The afforestation in RCP4.5 decreases surface albedo, making the net global temperature anomaly over land around five times larger than RCPs 2.6 and 8.5, for around twice the amount of LUC. Consequent changes to circulation in RCP4.5 in turn reduce Arctic sea ice cover. The small net positive temperature effect from LUC could make RCP4.5's universal carbon tax, which incentivizes retaining and growing forest, counter productive with respect to climate. However, there are spatial differences in the balance of impacts, and potential climate gains would need to be assessed against other environmental aims.
引用
收藏
页数:7
相关论文
共 32 条
[11]  
Essery R., 2001, Moses 2.2 technical documentation
[12]   Primary forests are irreplaceable for sustaining tropical biodiversity [J].
Gibson, Luke ;
Lee, Tien Ming ;
Koh, Lian Pin ;
Brook, Barry W. ;
Gardner, Toby A. ;
Barlow, Jos ;
Peres, Carlos A. ;
Bradshaw, Corey J. A. ;
Laurance, William F. ;
Lovejoy, Thomas E. ;
Sodhi, Navjot S. .
NATURE, 2011, 478 (7369) :378-+
[13]   Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations [J].
Gillett, Nathan P. ;
Arora, Vivek K. ;
Matthews, Damon ;
Allen, Myles R. .
JOURNAL OF CLIMATE, 2013, 26 (18) :6844-6858
[14]  
Gilroy JJ, 2014, NAT CLIM CHANGE, V4, P503, DOI [10.1038/NCLIMATE2200, 10.1038/nclimate2200]
[15]   Land use Changes and Northern Hemisphere Cooling [J].
Govindasamy, B ;
Duffy, PB ;
Caldeira, K .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (02) :291-294
[16]   Climate impacts of a large-scale biofuels expansion [J].
Hallgren, Willow ;
Schlosser, C. Adam ;
Monier, Erwan ;
Kicklighter, David ;
Sokolov, Andrei ;
Melillo, Jerry .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (08) :1624-1630
[17]   Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands [J].
Hurtt, G. C. ;
Chini, L. P. ;
Frolking, S. ;
Betts, R. A. ;
Feddema, J. ;
Fischer, G. ;
Fisk, J. P. ;
Hibbard, K. ;
Houghton, R. A. ;
Janetos, A. ;
Jones, C. D. ;
Kindermann, G. ;
Kinoshita, T. ;
Goldewijk, Kees Klein ;
Riahi, K. ;
Shevliakova, E. ;
Smith, S. ;
Stehfest, E. ;
Thomson, A. ;
Thornton, P. ;
van Vuuren, D. P. ;
Wang, Y. P. .
CLIMATIC CHANGE, 2011, 109 (1-2) :117-161
[18]   Greenhouse Gas Policy Influences Climate via Direct Effects of Land-Use Change [J].
Jones, Andrew D. ;
Collins, William D. ;
Edmonds, James ;
Torn, Margaret S. ;
Janetos, Anthony ;
Calvin, Katherine V. ;
Thomson, Allison ;
Chini, Louise P. ;
Mao, Jiafu ;
Shi, Xiaoying ;
Thornton, Peter ;
Hurtt, George C. ;
Wise, Marshall .
JOURNAL OF CLIMATE, 2013, 26 (11) :3657-3670
[19]   Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil [J].
Jones, C ;
McConnell, C ;
Coleman, K ;
Cox, P ;
Falloon, P ;
Jenkinson, D ;
Powlson, D .
GLOBAL CHANGE BIOLOGY, 2005, 11 (01) :154-166
[20]   The HadGEM2-ES implementation of CMIP5 centennial simulations [J].
Jones, C. D. ;
Hughes, J. K. ;
Bellouin, N. ;
Hardiman, S. C. ;
Jones, G. S. ;
Knight, J. ;
Liddicoat, S. ;
O'Connor, F. M. ;
Andres, R. J. ;
Bell, C. ;
Boo, K. -O. ;
Bozzo, A. ;
Butchart, N. ;
Cadule, P. ;
Corbin, K. D. ;
Doutriaux-Boucher, M. ;
Friedlingstein, P. ;
Gornall, J. ;
Gray, L. ;
Halloran, P. R. ;
Hurtt, G. ;
Ingram, W. J. ;
Lamarque, J. -F. ;
Law, R. M. ;
Meinshausen, M. ;
Osprey, S. ;
Palin, E. J. ;
Chini, L. Parsons ;
Raddatz, T. ;
Sanderson, M. G. ;
Sellar, A. A. ;
Schurer, A. ;
Valdes, P. ;
Wood, N. ;
Woodward, S. ;
Yoshioka, M. ;
Zerroukat, M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :543-570