Kondo physics and dissipation: A numerical renormalization-group approach to Bose-Fermi Kondo models

被引:37
作者
Glossop, Matthew T. [1 ]
Ingersent, Kevin [1 ]
机构
[1] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
来源
PHYSICAL REVIEW B | 2007年 / 75卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.75.104410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We extend the numerical renormalization-group method to treat Bose-Fermi Kondo models (BFKMs) describing a local moment coupled both to a conduction band and to a dissipative bosonic bath representing, e.g., lattice or spin collective excitations of the environment. We apply the method to the Ising-symmetry BFKM with a structureless band and a bath spectral function eta(omega)proportional to omega(s). The method is valid for all bath exponents s and all temperatures T. For 0 < s < 1, the range of interest in the context of heavy-fermion quantum criticality, an interacting critical point, characterized by hyperscaling of exponents and omega/T scaling, describes a continuous quantum phase transition between Kondo-screened and localized phases. For Ohmic dissipation s=1, where the model is relevant to certain dissipative mesoscopic qubit devices, the transition is found to be Kosterlitz-Thouless-like. In both regimes the impurity spectral function for the corresponding Anderson model shows clearly the collapse of the Kondo resonance at the transition. Connection is made to other recent results for the BFKM and the spin-boson model.
引用
收藏
页数:23
相关论文
共 65 条
[1]  
ACHDEV S, 1999, QUANTUM PHASE TRANSI
[2]   Real-time dynamics in quantum-impurity systems: A time-dependent numerical renormalization-group approach [J].
Anders, FB ;
Schiller, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (19)
[3]  
ANDERS FB, 2006, PHYS REV B, V95
[4]   EXACT RESULTS IN KONDO PROBLEM .2. SCALING THEORY, QUALITATIVELY CORRECT SOLUTION, AND SOME NEW RESULTS ON ONE-DIMENSIONAL CLASSICAL STATISTICAL MODELS [J].
ANDERSON, PW ;
YUVAL, G ;
HAMANN, DR .
PHYSICAL REVIEW B-SOLID STATE, 1970, 1 (11) :4464-+
[5]   Dissipation-induced quantum phase transition in a quantum box -: art. no. 155311 [J].
Borda, L ;
Zaránd, G ;
Simon, P .
PHYSICAL REVIEW B, 2005, 72 (15)
[6]  
BORDA L, 2003, PHYS REV LETT, V72
[7]   Dynamical mean-field theory: from quantum impurity physics to lattice problems [J].
Bulla, R .
PHILOSOPHICAL MAGAZINE, 2006, 86 (13-14) :1877-1889
[8]   Numerical renormalization group for quantum impurities in a bosonic bath [J].
Bulla, R ;
Lee, HJ ;
Tong, NH ;
Vojta, M .
PHYSICAL REVIEW B, 2005, 71 (04)
[9]   The soft-gap Anderson model: comparison of renormalization group and local moment approaches [J].
Bulla, R ;
Glossop, MT ;
Logan, DE ;
Pruschke, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (23) :4899-4921
[10]   Finite-temperature numerical renormalization group study of the Mott transition [J].
Bulla, R ;
Costi, TA ;
Vollhardt, D .
PHYSICAL REVIEW B, 2001, 64 (04)