Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface

被引:153
作者
Gao, Yue [2 ]
Wang, Daiwei [1 ]
Li, Yuguang C. [2 ]
Yu, Zhaoxin [1 ]
Mallouk, Thomas E. [2 ]
Wang, Donghai [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
batteries; electrochemistry; interfaces; lithium metal anode; solid-state electrolyte; BATTERIES; LI; LI10GEP2S12; INTERPHASE; CHEMISTRY; ANODE; PERFORMANCE; INSTABILITY; CHALLENGES;
D O I
10.1002/anie.201807304
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state Li metal battery technology is attractive, owing to the high energy density, long lifespans, and better safety. A key obstacle in this technology is the unstable Li/solid-state electrolyte (SSE) interface involving electrolyte reduction by Li. Herein we report a novel approach based on the use of a nanocomposite consisting of organic elastomeric salts (LiO-(CH2O)(n)-Li) and inorganic nanoparticle salts (LiF, -NSO2-Li, Li2O), which serve as an interphase to protect Li10GeP2S12 (LGPS), a highly conductive but reducible SSE. The nanocomposite is formed in situ on Li via the electro-chemical decomposition of a liquid electrolyte, thus having excellent chemical and electrochemical stability, affinity for Li and LGPS, and limited interfacial resistance. XPS depth profiling and SEM show that the nanocomposite effectively restrained the reduction of LGPS. Stable Li electrodeposition over 3000 h and a 200 cycle life for a full cell were achieved.
引用
收藏
页码:13608 / 13612
页数:5
相关论文
共 39 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[3]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[4]   An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytest [J].
Chen, Bingbing ;
Ju, Jiangwei ;
Ma, Jun ;
Zhang, Jianjun ;
Xiao, Ruijuan ;
Cui, Guanglei ;
Chen, Liquan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (46) :31436-31442
[5]   Ceramic and polymeric solid electrolytes for lithium-ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4554-4569
[6]   Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries [J].
Gao, Yue ;
Zhao, Yuming ;
Li, Yuguang C. ;
Huang, Qingquan ;
Mallouk, Thomas E. ;
Wang, Donghai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (43) :15288-15291
[7]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[8]   Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes [J].
Han, Fudong ;
Zhu, Yizhou ;
He, Xingfeng ;
Mo, Yifei ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[9]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/nmat4821, 10.1038/NMAT4821]
[10]   Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes [J].
Hartmann, Pascal ;
Leichtweiss, Thomas ;
Busche, Martin R. ;
Schneider, Meike ;
Reich, Marisa ;
Sann, Joachim ;
Adelhelm, Philipp ;
Janek, Juergen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (41) :21064-21074