Effect of Polymer Architecture on the Ionic Conductivity. Densely Grafted Poly(ethylene oxide) Brushes Doped with LiTf

被引:43
|
作者
Zardalidis, George [1 ]
Pipertzis, Achilleas [1 ]
Mountrichas, Grigoris [2 ]
Pispas, Stergios [2 ]
Mezger, Markus [3 ,4 ]
Floudas, George [1 ]
机构
[1] Univ Ioannina, Dept Phys, POB 1186, GR-45110 Ioannina, Greece
[2] Natl Hellen Res Fdn, Inst Theoret & Phys Chem, GR-11635 Athens, Greece
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
[4] Johannes Gutenberg Univ Mainz, Max Planck Inst Polymer Res, D-55128 Mainz, Germany
关键词
BLOCK-COPOLYMER ELECTROLYTES; MOLECULAR-WEIGHT; GRAIN-BOUNDARY; THERMODYNAMICS; TRANSPORT;
D O I
10.1021/acs.macromol.6b00290
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Densely grafted poly(ethylene oxide) (PEO) brushes on a poly(hydroxylstyrene) (PHOS) backbone (PHOS-g-PEO) as well as block copolymers with polystyrene (PS) (PS-b-(PHOS-g-PEO)) are designed as model systems for Li ion transport. This macromolecular design suppresses the propensity of PEO chains for complex crystal formation with LiTf as well as for crystallization. Li ion conductivities similar or even exceeding those in the archetypal electrolyte poly(ethylene oxide)/lithium triflate (PEO/LiCF3SO3 (LiTf)) are obtained for a range of temperatures and LiTf compositions. At the same time, PHOS-g-PEO and PS-b-(PHOS-g-PEO) show improved mechanical stability. Typically, at 333 K, the ionic conductivity is similar to 6 x 10(-5) S/cm and the modulus at similar to 2 x 10(6) Pa for a [EO]: [Li+] = 8:1 composition. In the endeavor for suitable solid polymer electrolytes macromolecular architecture seems to play a decisive role.
引用
收藏
页码:2679 / 2687
页数:9
相关论文
共 50 条
  • [11] Morphology and ionic conductivity of poly(ethylene oxide)-poly(vinyl acetate)-LiClO4 polymer electrolytes
    Animitsa, IE
    Kruglyashov, AL
    Bushkova, OV
    SOLID STATE IONICS, 1998, 106 (3-4) : 321 - 327
  • [12] Unveiling the Side-Chain Effect on Ionic Conductivity of Poly(ethylene oxide)-Based Polymer-Brush Electrolytes
    Ji, Xiaoyu
    Xiao, Lin-Lin
    Zhang, Yiruo
    Yue, Kan
    Zhou, Xingui
    Guo, Zi-Hao
    ACS APPLIED ENERGY MATERIALS, 2022, : 8410 - 8418
  • [13] An experimental and theoretical correlation to account for the effect of graphene quantum dots on the ionic conductivity of poly(ethylene oxide) polymer electrolytes
    Xu, Xiaoyan
    Chen, Jianzhong
    Wang, Lifei
    Zhao, Juan
    Wu, Shiliang
    Yin, Yanyan
    Li, Hongyun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (08) : 2177 - 2184
  • [14] Ionic Conductivity in Solutions of Poly(ethylene oxide) and Lithium Perchlorate
    Nasir, Noor Hidaya Abdul
    Chan, Chin Han
    Kammer, Hans-Werner
    Sim, Lai Har
    Yahya, Muhd Zu Azahan
    MACROMOLECULAR SYMPOSIA, 2010, 290 : 46 - 55
  • [15] Effect of crown ether on the ionic conductivity of the poly(ethylene oxide) lithium salt electrolyte
    Mehta, MA
    Kaeriyama, K
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 1996, 197 (02) : 609 - 619
  • [17] Ionic conductivity of polymer solid electrolyte prepared from poly[epichlorohydrin-co-(Ethylene oxide)] of high ethylene oxide content
    Ikeda, Y
    Masui, H
    Matoba, Y
    JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 95 (01) : 178 - 184
  • [18] Dielectric Relaxation and Ionic Conductivity of a Chitosan/Poly(ethylene oxide) Blend Doped with Potassium and Calcium Cations
    Rakkapao, Natthida
    Watanabe, Hiroshi
    Matsumiya, Yumi
    Masubuchi, Yuichi
    NIHON REOROJI GAKKAISHI, 2016, 44 (02) : 89 - 97
  • [19] Ionic conductivity in polyethylene-b-poly(ethylene oxide)/lithium perchlorate solid polymer electrolytes
    Guilherme, L. A.
    Borges, R. S.
    Moraes, E. Mara S.
    Silva, G. Goulart
    Pimenta, M. A.
    Marletta, A.
    Silva, R. A.
    ELECTROCHIMICA ACTA, 2007, 53 (04) : 1503 - 1511
  • [20] A fibrotic poly (ethylene oxide) polymer electrolyte with high ionic conductivity for stable lithium metal batteries
    Tian, Hao
    TrungHieu Le
    Yang, Ying
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (05) : 5038 - 5043