Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4

被引:2
|
作者
Lim, Sangrak [1 ]
Lee, Yong Oh [1 ,2 ]
Yoon, Juyong [1 ]
Kim, Young Jun [1 ]
机构
[1] Kist Europe, Campus E7 1, D-66123 Saarbrucken, Germany
[2] Hongik Univ, Ind & Data Engn Dept, Seoul, South Korea
关键词
Molecular docking; Binding affinity; D3R-drug design data resource; Deep learning; PROTEIN; CHEMISTRY;
D O I
10.1007/s10822-022-00448-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Modern molecular docking comprises the prediction of pose and affinity. Prediction of docking poses is required for affinity prediction when three-dimensional coordinates of the ligand have not been provided. However, a large number of feature engineering is required for existing methods. In addition, there is a need for a robust model for the sequential combination of pose and affinity prediction due to the probabilistic deviation of the ligand position issue. We propose a pipeline using a bipartite graph neural network and transfer learning trained on a re-docking dataset. We evaluated our model on the released data from drug design data resource grand challenge 4 (D3R GC4). The two target protein data provided by the challenge have different patterns. The model outperformed the best participant by 9% on the BACE target protein from stage 2. Further, our model showed competitive performance on the CatS target protein.
引用
收藏
页码:225 / 235
页数:11
相关论文
共 50 条
  • [41] D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU
    Diogo Santos-Martins
    Jerome Eberhardt
    Giulia Bianco
    Leonardo Solis-Vasquez
    Francesca Alessandra Ambrosio
    Andreas Koch
    Stefano Forli
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1071 - 1081
  • [42] D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies
    Gaieb, Zied
    Liu, Shuai
    Gathiaka, Symon
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Feher, Victoria A.
    Walters, W. Patrick
    Kuhn, Bernd
    Rudolph, Markus G.
    Burley, Stephen K.
    Gilson, Michael K.
    Amaro, Rommie E.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (01) : 1 - 20
  • [43] D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU
    Santos-Martins, Diogo
    Eberhardt, Jerome
    Bianco, Giulia
    Solis-Vasquez, Leonardo
    Ambrosio, Francesca Alessandra
    Koch, Andreas
    Forli, Stefano
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1071 - 1081
  • [44] Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2
    Zeynep Kurkcuoglu
    Panagiotis I. Koukos
    Nevia Citro
    Mikael E. Trellet
    J. P. G. L. M. Rodrigues
    Irina S. Moreira
    Jorge Roel-Touris
    Adrien S. J. Melquiond
    Cunliang Geng
    Jörg Schaarschmidt
    Li C. Xue
    Anna Vangone
    A. M. J. J. Bonvin
    Journal of Computer-Aided Molecular Design, 2018, 32 : 175 - 185
  • [45] Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4
    Kotelnikov, Sergei
    Alekseenko, Andrey
    Liu, Cong
    Ignatov, Mikhail
    Padhorny, Dzmitry
    Brini, Emiliano
    Lukin, Mark
    Coutsias, Evangelos
    Dill, Ken A.
    Kozakov, Dima
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 179 - 189
  • [46] Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016
    Fradera, Xavier
    Verras, Andreas
    Hu, Yuan
    Wang, Deping
    Wang, Hongwu
    Fells, James I.
    Armacost, Kira A.
    Crespo, Alejandro
    Sherborne, Brad
    Wang, Huijun
    Peng, Zhengwei
    Gao, Ying-Duo
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (01) : 113 - 127
  • [47] Docking-undocking combination applied to the D3R Grand Challenge 2015
    Ruiz-Carmona, Sergio
    Barril, Xavier
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 805 - 815
  • [48] Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4
    Léa El Khoury
    Diogo Santos-Martins
    Sukanya Sasmal
    Jérôme Eberhardt
    Giulia Bianco
    Francesca Alessandra Ambrosio
    Leonardo Solis-Vasquez
    Andreas Koch
    Stefano Forli
    David L. Mobley
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1011 - 1020
  • [49] Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset
    Eddy Elisée
    Vytautas Gapsys
    Nawel Mele
    Ludovic Chaput
    Edithe Selwa
    Bert L. de Groot
    Bogdan I. Iorga
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1031 - 1043
  • [50] Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016
    Xavier Fradera
    Andreas Verras
    Yuan Hu
    Deping Wang
    Hongwu Wang
    James I. Fells
    Kira A. Armacost
    Alejandro Crespo
    Brad Sherborne
    Huijun Wang
    Zhengwei Peng
    Ying-Duo Gao
    Journal of Computer-Aided Molecular Design, 2018, 32 : 113 - 127