Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4

被引:2
|
作者
Lim, Sangrak [1 ]
Lee, Yong Oh [1 ,2 ]
Yoon, Juyong [1 ]
Kim, Young Jun [1 ]
机构
[1] Kist Europe, Campus E7 1, D-66123 Saarbrucken, Germany
[2] Hongik Univ, Ind & Data Engn Dept, Seoul, South Korea
关键词
Molecular docking; Binding affinity; D3R-drug design data resource; Deep learning; PROTEIN; CHEMISTRY;
D O I
10.1007/s10822-022-00448-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Modern molecular docking comprises the prediction of pose and affinity. Prediction of docking poses is required for affinity prediction when three-dimensional coordinates of the ligand have not been provided. However, a large number of feature engineering is required for existing methods. In addition, there is a need for a robust model for the sequential combination of pose and affinity prediction due to the probabilistic deviation of the ligand position issue. We propose a pipeline using a bipartite graph neural network and transfer learning trained on a re-docking dataset. We evaluated our model on the released data from drug design data resource grand challenge 4 (D3R GC4). The two target protein data provided by the challenge have different patterns. The model outperformed the best participant by 9% on the BACE target protein from stage 2. Further, our model showed competitive performance on the CatS target protein.
引用
收藏
页码:225 / 235
页数:11
相关论文
共 50 条
  • [31] Macrocycle modeling in ICM: benchmarking and evaluation in D3R Grand Challenge 4
    Polo C.-H. Lam
    Ruben Abagyan
    Maxim Totrov
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1057 - 1069
  • [32] Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015
    Ashutosh Kumar
    Kam Y. J. Zhang
    Journal of Computer-Aided Molecular Design, 2016, 30 : 685 - 693
  • [33] Predicting binding poses and affinity ranking in D3R Grand Challenge using PL-PatchSurfer2.0
    Shin, Woong-Hee
    Kihara, Daisuke
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1083 - 1094
  • [34] D3R Grand Challenge 4: Pose prediction and affinity ranking for BACE-1 inhibitors using ligand similarity and MM-GBSA calculations
    El Khoury, Lea
    Sasmal, Sukanya
    Mobley, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [35] D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions
    Gathiaka, Symon
    Liu, Shuai
    Chiu, Michael
    Yang, Huanwang
    Stuckey, Jeanne A.
    Kang, You Na
    Delproposto, Jim
    Kubish, Ginger
    Dunbar, James B., Jr.
    Carlson, Heather A.
    Burley, Stephen K.
    Walters, W. Patrick
    Amaro, Rommie E.
    Feher, Victoria A.
    Gilson, Michael K.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 651 - 668
  • [36] Macrocycle modeling in ICM: benchmarking and evaluation in D3R Grand Challenge 4
    Lam, Polo C-H
    Abagyan, Ruben
    Totrov, Maxim
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1057 - 1069
  • [37] Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3
    Ashutosh Kumar
    Kam Y. J. Zhang
    Journal of Computer-Aided Molecular Design, 2019, 33 : 47 - 59
  • [38] D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies
    Zied Gaieb
    Shuai Liu
    Symon Gathiaka
    Michael Chiu
    Huanwang Yang
    Chenghua Shao
    Victoria A. Feher
    W. Patrick Walters
    Bernd Kuhn
    Markus G. Rudolph
    Stephen K. Burley
    Michael K. Gilson
    Rommie E. Amaro
    Journal of Computer-Aided Molecular Design, 2018, 32 : 1 - 20
  • [39] Protein-ligand pose and affinity prediction: Case study on BACE1 cyclic ligand dataset in D3R Grand Challenge 4
    Yang, Chao
    Lu, Jianing
    Yang, Yuwei
    Zhang, Yingkai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [40] Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4
    Sergei Kotelnikov
    Andrey Alekseenko
    Cong Liu
    Mikhail Ignatov
    Dzmitry Padhorny
    Emiliano Brini
    Mark Lukin
    Evangelos Coutsias
    Ken A. Dill
    Dima Kozakov
    Journal of Computer-Aided Molecular Design, 2020, 34 : 179 - 189