Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation

被引:17
|
作者
Lafleche, Laurent [1 ,2 ]
机构
[1] PSL Res Univ, Univ Paris Dauphine, CEREMADE, UMR 7534,CNRS, Pl Marechal de Lattre de Tassigny, F-75775 Paris 16, France
[2] Univ Paris Saclay, CNRS, Ecole Polytech, CMLS, F-91128 Palaiseau, France
关键词
Hartree equation; Nonlinear Schrodinger equation; Vlasov equation; Coulomb interaction; Gravitational interaction; Semiclassical limit; MEAN-FIELD LIMIT; SCHRODINGER-POISSON; CLASSICAL LIMIT; WIGNER-POISSON; WELL-POSEDNESS; FOCK EQUATION; QUANTUM; UNIQUENESS; DYNAMICS; APPROXIMATION;
D O I
10.1007/s10955-019-02356-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we prove a quantitative version of the semiclassical limit from the Hartree to the Vlasov equation with singular interaction, including the Coulomb potential. To reach this objective, we also prove the propagation of velocity moments and weighted Schatten norms which implies the boundedness of the space density of particles uniformly in the Planck constant.
引用
收藏
页码:20 / 60
页数:41
相关论文
共 50 条