MIXED-DIMENSIONAL GEOMETRIC MULTIGRID METHODS FOR SINGLE-PHASE FLOW IN FRACTURED POROUS MEDIA

被引:11
作者
Arraras, Andres [1 ]
Gaspar, Francisco J. [2 ]
Portero, Laura [1 ]
Rodrigo, Carmen [3 ]
机构
[1] Univ Publ Navarra, Dept Estadist Informat & Matemat, Edificio Las Encinas,Campus Arrosadia, Pamplona 31006, Spain
[2] CWI, NL-1098 XG Amsterdam, Netherlands
[3] Univ Zaragoza, Dept Matemat Aplicada, IUMA, E-50009 Zaragoza, Spain
关键词
fracture network; fractured porous media; monolithic multigrid method; single-phase flow; Vanka smoother; VIRTUAL ELEMENT METHOD; DISCRETE FRACTURE; DARCY FLOW; MODELING FRACTURES; FINITE-ELEMENTS; POROSITY MODEL; 2-PHASE FLOW; SIMULATION; ENRICHMENT; INTERFACES;
D O I
10.1137/18M1224751
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the efficient numerical solution of single-phase flow problems in fractured porous media. A monolithic multigrid method is proposed for solving two-dimensional arbitrary fracture networks with vertical and/or horizontal possibly intersecting fractures. The key point is to combine two-dimensional multigrid components (smoother and intergrid transfer operators) in the porous matrix with their one-dimensional counterparts within the fractures, giving rise to a mixed-dimensional geometric multigrid method. This combination seems to be optimal since it provides an algorithm whose convergence matches the multigrid convergence factor for solving the Darcy problem. Several numerical experiments are presented to demonstrate the robustness of the monolithic mixed-dimensional multigrid method with respect to the permeability of the fractures, the grid size, and the number of fractures in the network.
引用
收藏
页码:B1082 / B1114
页数:33
相关论文
共 81 条
[1]   Improving the conditioning of XFEM/GFEM for fracture mechanics problems through enrichment quasi-orthogonalization [J].
Agathos, Konstantinos ;
Bordas, Stephane P. A. ;
Chatzi, Eleni .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 :1051-1073
[2]   Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes [J].
Agathos, Konstantinos ;
Ventura, Giulio ;
Chatzi, Eleni ;
Bordas, Stephane P. A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (02) :252-276
[3]   Stable 3D extended finite elements with higher order enrichment for accurate non planar fracture [J].
Agathos, Konstantinos ;
Chatzi, Eleni ;
Bordas, Stephane P. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 306 :19-46
[4]   A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture [J].
Agathos, Konstantinos ;
Chatzi, Eleni ;
Bordas, Stephane P. A. ;
Talaslidis, Demosthenes .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 105 (09) :643-677
[5]   Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model [J].
Ahmed, R. ;
Edwards, M. G. ;
Lamine, S. ;
Huisman, B. A. H. ;
Pal, M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 284 :462-489
[6]  
Alboin C., 2002, Fluid Flow Transp. Porous Media, V295, P13
[7]  
Amir L., 2006, ARIMA, V5, P11
[8]   ASYMPTOTIC AND NUMERICAL MODELLING OF FLOWS IN FRACTURED POROUS MEDIA [J].
Angot, Philippe ;
Boyer, Franck ;
Hubert, Florence .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :239-275
[9]  
[Anonymous], 1985, Multi-grid methods and applications
[10]  
[Anonymous], 2005, Practical Fourier Analysis for Multigrid Methods