Vortices and ring dark solitons in nonlinear amplifying waveguides

被引:26
作者
Zhang, Jie-Fang [1 ]
Wu, Lei [2 ]
Li, Lu [3 ]
Mihalache, Dumitru [4 ]
Malomed, Boris A. [5 ]
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Forestry Univ, Tianmu Coll, Linan 311300, Peoples R China
[3] Shanxi Univ, Inst Theoret Phys, Taiyuan 030006, Shanxi, Peoples R China
[4] Horia Hulubei Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania
[5] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 02期
关键词
PARABOLIC PULSES; PROPAGATION;
D O I
10.1103/PhysRevA.81.023836
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the generation and propagation of (2 + 1)-dimensional beams in a nonlinear waveguide with the linear gain. Simple self-similar evolution of the beams is achieved at the asymptotic stage if the input beams represent the fundamental mode. On the contrary, if they carry vorticity or amplitude nodes (or phase slips), vortex tori and ring dark solitons (RDSs) are generated, featuring another type of the self-similar evolution, with an exponentially shrinking vortex core or notch of the RDS. Numerical and analytical considerations reveal that these self-similar structures are robust entities in amplifying waveguides, being stable against azimuthal perturbations.
引用
收藏
页数:4
相关论文
共 25 条
[1]  
Barenblatt G.I., 1996, Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics No. 14, V14
[2]   Self-similar parabolic beam generation and propagation [J].
Chang, GQ ;
Winful, HG ;
Galvanauskas, A ;
Norris, TB .
PHYSICAL REVIEW E, 2005, 72 (01)
[3]   Self-similar evolutions of parabolic, Hermite-Gaussian, and hybrid optical pulses: Universality and diversity [J].
Chen, SH ;
Yi, L ;
Guo, DS ;
Lu, PX .
PHYSICAL REVIEW E, 2005, 72 (01)
[4]   Spatiotemporal Nonlinear Optical Self-Similarity in Three Dimensions [J].
Chen, Shihua ;
Dudley, John M. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[5]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[6]   Optical vortices and vortex solitons [J].
Desyatnikov, AS ;
Kivshar, YS ;
Torner, L .
PROGRESS IN OPTICS, VOL 47, 2005, 47 :291-391
[7]   Asymptotic solutions to the Gross-Pitaevskii gain equation: Growth of a Bose-Einstein condensate [J].
Drummond, P.D. ;
Kheruntsyan, K.V. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (01) :013605-013601
[8]   Three-dimensional vortex solitons in self-defocusing media [J].
Efremidis, Nikolaos K. ;
Hizanidis, Kyriakos ;
Malomed, Boris A. ;
Di Trapani, Paolo .
PHYSICAL REVIEW LETTERS, 2007, 98 (11)
[9]   Self-similar propagation and amplification of parabolic pulses in optical fibers [J].
Fermann, ME ;
Kruglov, VI ;
Thomsen, BC ;
Dudley, JM ;
Harvey, JD .
PHYSICAL REVIEW LETTERS, 2000, 84 (26) :6010-6013
[10]   Regenerative 40 Gbit/s wavelength converter based on similariton generation [J].
Finot, C ;
Pitois, S ;
Millot, G .
OPTICS LETTERS, 2005, 30 (14) :1776-1778