Theoretical insights into effect of surface composition of Pt-Ru bimetallic catalysts on CH3OH oxidation: mechanistic considerations

被引:1
作者
Ou, Lihui [1 ]
机构
[1] Hunan Univ Arts & Sci, Hunan Prov Key Lab Water Treatment Funct Mat, Hunan Prov Engn Res Ctr Elect Wastewater Reuse Te, Coll Chem & Mat Engn,Hunan Prov Cooperat Innovat, Changde 415000, Peoples R China
基金
中国国家自然科学基金;
关键词
CH3OH oxidation; Pt-Ru alloy; Surface composition; Catalytic activity; Work function; METHANOL OXIDATION; ELECTROCATALYTIC OXIDATION; CO ELECTROOXIDATION; PLATINUM; ALLOY; ADSORPTION; DECOMPOSITION; NANOPARTICLES; SUBMONOLAYER; SPECTROSCOPY;
D O I
10.1007/s00894-022-05150-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A deeper mechanistic understanding on CH3OH oxidation on Pt-Ru alloys with different Ru surface compositions is provided by DFT-based theoretical studies in this paper. The present results show that alloying and surface compositions of Ru can change CH3OH oxidation pathway and activity. The optimal surface composition of Ru is speculated to be ca. 50% since the higher Ru surface composition can lead to formation of carbonaceous species that can poison surface. Our present calculated Ru surface composition of ca. 50% exhibits excellent consistency with experimental studies. The origin of enhanced catalytic activity of Pt-Ru alloys is determined. The significantly decreased surface work functions after alloying suggest more electrons are transferred into adsorbates. The calculated lower electrode potentials after alloying imply that lower overpotentials are required for CH3OH oxidation. The excellent consistency with experimental study on decreased onset potentials after alloying further confirms accuracy of our present calculated results. It is hoped that a systematic understanding of the atomic- and molecular-level processes on CH3OH oxidation mechanisms on Pt-Ru alloys will result in the ultimate goal of the explanation of origin of enhanced electrocatalytic activity and design of improved Pt-based alloy electrocatalysts for DMFCs.
引用
收藏
页数:11
相关论文
共 60 条
[1]   GENERALIZED SCHEME OF CHEMISORPTION, ELECTROOXIDATION AND ELECTROREDUCTION OF SIMPLE ORGANIC-COMPOUNDS ON PLATINUM GROUP METALS [J].
BAGOTZKY, VS ;
VASSILIEV, YB ;
KHAZOVA, OA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1977, 81 (02) :229-238
[2]   Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach [J].
Cao, D ;
Lu, GQ ;
Wieckowski, A ;
Wasileski, SA ;
Neurock, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (23) :11622-11633
[3]   CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces - a combined STM and TPD/TPR study [J].
de Mongeot, FB ;
Scherer, M ;
Gleich, B ;
Kopatzki, E ;
Behm, RJ .
SURFACE SCIENCE, 1998, 411 (03) :249-262
[4]   High-Activity Mesoporous Pt/Ru Catalysts for Methanol Oxidation [J].
Franceschini, Esteban A. ;
Bruno, Mariano M. ;
Williams, Federico J. ;
Viva, Federico A. ;
Corti, Horacio R. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) :10437-10444
[5]   The Effect of the Surface Composition of Ru-Pt Bimetallic Catalysts for Methanol Oxidation [J].
Garrick, Taylor R. ;
Diao, Weijian ;
Tengco, John M. ;
Stach, Eric A. ;
Senanayake, Sanjaya D. ;
Chen, Donna A. ;
Monnier, John R. ;
Weidner, John W. .
ELECTROCHIMICA ACTA, 2016, 195 :106-111
[6]   ELECTROOXIDATION OF SMALL ORGANIC-MOLECULES ON WELL-CHARACTERIZED PT-RU ALLOYS [J].
GASTEIGER, HA ;
MARKOVIC, N ;
ROSS, PN ;
CAIRNS, EJ .
ELECTROCHIMICA ACTA, 1994, 39 (11-12) :1825-1832
[7]   CO ELECTROOXIDATION ON WELL-CHARACTERIZED PT-RU ALLOYS [J].
GASTEIGER, HA ;
MARKOVIC, N ;
ROSS, PN ;
CAIRNS, EJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (02) :617-625
[8]   METHANOL ELECTROOXIDATION ON WELL-CHARACTERIZED PT-RN ALLOYS [J].
GASTEIGER, HA ;
MARKOVIC, N ;
ROSS, PN ;
CAIRNS, EJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (46) :12020-12029
[9]   TEMPERATURE-DEPENDENT METHANOL ELECTROOXIDATION ON WELL-CHARACTERIZED PT-RU ALLOYS [J].
GASTEIGER, HA ;
MARKOVIC, N ;
ROSS, PN ;
CAIRNS, EJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (07) :1795-1803
[10]   H-2 AND CO ELECTROOXIDATION ON WELL-CHARACTERIZED PT, RU, AND PT-RU .1. ROTATING-DISK ELECTRODE STUDIES OF THE PURE GASES INCLUDING TEMPERATURE EFFECTS [J].
GASTEIGER, HA ;
MARKOVIC, NM ;
ROSS, PN .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (20) :8290-8301