A Contraction Theory-Based Analysis of the Stability of the Deterministic Extended Kalman Filter

被引:89
作者
Bonnabel, Silvere [1 ]
Slotine, Jean-Jacques [2 ]
机构
[1] PSL Res Univ, MINES ParisTech, F-75006 Paris, France
[2] MIT, Nonlinear Syst Lab, Cambridge, MA 02139 USA
关键词
Contraction theory; extended Kalman filter; nonlinear asymptotic observer; virtual system;
D O I
10.1109/TAC.2014.2336991
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The contraction properties of the extended Kalman filter, viewed as a deterministic observer for nonlinear systems, are analyzed. The approach relies on the study of an auxiliary "virtual" dynamical system. Some conditions under which exponential convergence of the state error can be guaranteed are derived. Moreover, contraction provides a simple formalism to study some robustness properties of the filter, especially with respect to measurement errors, as illustrated by a simplified inertial navigation example. This technical note sheds another light on the theoretical properties of this popular observer.
引用
收藏
页码:565 / 569
页数:5
相关论文
共 19 条
[1]   DYNAMIC OBSERVERS AS ASYMPTOTIC LIMITS OF RECURSIVE FILTERS - SPECIAL CASES [J].
BARAS, JS ;
BENSOUSSAN, A ;
JAMES, MR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (05) :1147-1158
[2]   Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems [J].
Boutayeb, M ;
Rafaralahy, H ;
Darouach, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (04) :581-586
[3]   A Contraction Theory Approach to Singularly Perturbed Systems [J].
Del Vecchio, Domitilla ;
Slotine, Jean-Jacques E. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) :752-757
[4]  
Demidovich B.P., 1961, VESTNIK MOSCOW ST MM
[5]   CONDITIONS FOR ASYMPTOTIC STABILITY OF DISCRETE MINIMUM-VARIANCE LINEAR ESTIMATOR [J].
DEYST, JJ ;
PRICE, CF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (06) :702-&
[6]   HIGH-GAIN ESTIMATION FOR NONLINEAR-SYSTEMS [J].
DEZA, F ;
BUSVELLE, E ;
GAUTHIER, JP ;
RAKOTOPARA, D .
SYSTEMS & CONTROL LETTERS, 1992, 18 (04) :295-299
[7]  
FROMION V, 1997, P EUR CONTR C
[8]   STABILITY IN LARGE FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS [J].
HARTMAN, P .
CANADIAN JOURNAL OF MATHEMATICS, 1961, 13 (03) :480-&
[9]   Methodological remarks on contraction theory [J].
Jouffroy, J ;
Slotine, JJE .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :2537-2543
[10]  
Jouffroy J, 2005, IEEE DECIS CONTR P, P5450