Zwitterionic Lipid Assemblies: Molecular Dynamics Studies of Monolayers, Bilayers, and Vesicles Using a New Coarse Grain Force Field

被引:217
作者
Shinoda, Wataru [1 ]
DeVane, Russell [2 ,3 ]
Klein, Michael L. [2 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[2] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA
[3] Temple Univ, Inst Computat Mol Sci, Philadelphia, PA 19122 USA
关键词
CHAIN-LENGTH; MODEL; SIMULATIONS; WATER; INTEGRATION; ELASTICITY; EQUATIONS; TENSION; SURFACE;
D O I
10.1021/jp9107206
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new coarse-grained (CG) intermolecular force field is presented for a series of zwitterionic lipids. The model is an extension of our previous work on nonionic surfactants and is designed to reproduce experimental surface/interfacial properties as well as distribution functions from all-atom molecular dynamics (MD) simulations. Using simple functional forms, the force field parameters are optimized for multiple lipid molecules, simultaneously. The resulting CO lipid bilayers have reasonable molecular areas, chain order parameters, and elastic properties. The computed surface pressure vs area (pi-A) curve for a dipalmitoyl phosphatidylcholine (DPPC) monolayer demonstrates a significant improvement over the previous CO models. The DPPC monolayer has a longer persistence length than a polyethyleneglycol (PEG) lipid monolayer, exhibiting a long-lived curved monolayer surface under negative tension. The bud ejected from an oversaturated DPPC monolayer has a large bicelle-like structure, which is different from the micellar bud formed from an oversaturated PEG lipid monolayer. We have successfully observed vesicle formation during CG-MD simulations, starting from an aggregate of dimyristoyl phosphatidylcholine (DMPC) molecules. Depending on the aggregate size, the lipid assembly spontaneously transforms into a closed vesicle or a bicelle. None of the various intermediate structures between these extremes seem to be stable. An attempt to observe fusion of two vesicles through the application of an external adhesion force was not successful. The present CO force field also supports stable multilamellar DMPC vesicles.
引用
收藏
页码:6836 / 6849
页数:14
相关论文
共 75 条
[1]   Equation of state for a coarse-grained DPPC monolayer at the air/water interface [J].
Adhangale, Parag S. ;
Gaver, Donald P., III .
MOLECULAR PHYSICS, 2006, 104 (19) :3011-3019
[2]  
Allen M. P., 1987, COMPUTER SIMULATION
[3]   Hydration and molecular motions in synthetic phytanyl-chained glycolipid vesicle membranes [J].
Baba, T ;
Minamikawa, H ;
Hato, M ;
Handa, T .
BIOPHYSICAL JOURNAL, 2001, 81 (06) :3377-3386
[4]   The molecular mechanism of lipid monolayer collapse [J].
Baoukina, Svetlana ;
Monticelli, Luca ;
Risselada, H. Jelger ;
Marrink, Siewert J. ;
Tieleman, D. Peter .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (31) :10803-10808
[5]   Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations [J].
Baoukina, Svetlana ;
Monticelli, Luca ;
Marrink, Siewert J. ;
Tieleman, D. Peter .
LANGMUIR, 2007, 23 (25) :12617-12623
[6]   The mechanisms of vesicle budding and fusion [J].
Bonifacino, JS ;
Glick, BS .
CELL, 2004, 116 (02) :153-166
[7]   A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayers [J].
Brannigan, G ;
Brown, FLH .
BIOPHYSICAL JOURNAL, 2006, 90 (05) :1501-1520
[8]   Implicit solvent simulation models for biomembranes [J].
Brannigan, G ;
Lin, LCL ;
Brown, FLH .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2006, 35 (02) :104-124
[9]   Simulated surface tensions of common water models [J].
Chen, Feng ;
Smith, Paul E. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (22)
[10]   Solvent-free model for self-assembling fluid bilayer membranes: Stabilization of the fluid phase based on broad attractive tail potentials [J].
Cooke, IR ;
Deserno, M .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (22)