Shape optimization in two-dimensional viscous compressible fluids

被引:0
作者
Tan, Zhong [1 ]
Zhang, Ying Hui [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Hunan Inst Sci & Technol, Dept Math, Yueyang 414006, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimization shape; Orlicz spaces; Navier-Stokes equations; NAVIER-STOKES EQUATIONS; EXISTENCE; FLOW;
D O I
10.1007/s10114-010-7584-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method for solving the optimal shape problems for profiles surrounded by viscous compressible fluids in two space dimensions. The class of admissible profiles is quite general including the minimal volume condition and a constraint on the thickness of the boundary. The fluid flow is modelled by the Navier-Stokes system for a general viscous barotropic fluid with the pressure satisfying p(I +/-) = aI +/- log (d) (I +/-) for large I +/-. Here d > 1 and a > 0.
引用
收藏
页码:1793 / 1806
页数:14
相关论文
共 18 条
[1]  
ADAMS R, 1975, SOBOLEV SPACE
[2]   N-dimensional shape optimization under capacitary constraint [J].
Bucur, D ;
Zolesio, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (02) :504-522
[3]  
Chenais D, 1987, ENG OPTIMIZ, V11, P289, DOI 10.1080/03052158708941052
[4]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[5]   On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow [J].
Erban, R .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (06) :489-517
[6]   Shape optimization in viscous compressible fluids [J].
Feireisl, E .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (01) :59-78
[7]   On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid [J].
Feireisl, E ;
Novotny, A ;
Petzeltová, H .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (12) :1045-1073
[8]  
Feireisl E., 2001, Comment. Math. Univ. Carol, V42, P83
[9]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[10]  
Haslinger J., 1989, FINITE ELEMENT APPRO