Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds

被引:589
|
作者
Leach, JB
Bivens, KA
Patrick, CW
Schmidt, CE
机构
[1] Univ Texas, Dept Biomed Engn, Austin, TX 78712 USA
[2] Univ Texas, Dept Chem Engn, Austin, TX 78712 USA
[3] Univ Texas, MD Anderson Canc Ctr, Dept Plast Surg, Houston, TX 77030 USA
[4] Univ Texas, Texas Mat Inst, Austin, TX 78712 USA
关键词
biomimetic; degradable; hyaluronic acid; hydrogel; photopolymerization; tissue engineering;
D O I
10.1002/bit.10605
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Ideally, rationally designed tissue engineering scaffolds promote natural wound healing and regeneration. Therefore, we sought to synthesize a biomimetic hydrogel specifically designed to promote tissue repair and chose hyaluronic acid (HA; also called hyaluronan) as our initial material. Hyaluronic acid is a naturally occurring polymer associated with various cellular processes involved in wound healing, such as angiogenesis. Hyaluronic acid also presents unique advantages: it is easy to produce and modify, hydrophilic and nonadhesive, and naturally biodegradable. We prepared a range of glycidyl methacrylate-HA (GMHA) conjugates, which were subsequently photopolymerized to form crosslinked GMHA hydrogels. A range of hydrogel degradation rates was achieved as well as a corresponding, modest range of material properties (e.g., swelling, mesh size). Increased amounts of conjugated methacrylate groups corresponded with increased crosslink densities and decreased degradation rates and yet had an insignificant effect on human aortic endothelial cell cytocompatibility and proliferation. Rat subcutaneous implants of the GMHA hydrogels showed good biocompatibility, little inflammatory response, and similar levels of vascularization at the implant edge compared with those of fibrin positive controls. Therefore, these novel GMHA bydrogels are suitable for modification with adhesive peptide sequences (e.g., RGD) and use in a variety of wound-healing applications. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:578 / 589
页数:12
相关论文
共 50 条
  • [41] Hyaluronic acid hydrogel scaffolds with a triple degradation behavior for bone tissue engineering
    Cui, Ning
    Qian, Junmin
    Liu, Ting
    Zhao, Na
    Wang, Hongjie
    CARBOHYDRATE POLYMERS, 2015, 126 : 192 - 198
  • [42] Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering
    Shalu Suri
    Li-Hsin Han
    Wande Zhang
    Ankur Singh
    Shaochen Chen
    Christine E. Schmidt
    Biomedical Microdevices, 2011, 13 : 983 - 993
  • [43] Hydroxypropyl Cellulose/Pluronic-Based Composite Hydrogels as Biodegradable Mucoadhesive Scaffolds for Tissue Engineering
    Filip, Daniela
    Macocinschi, Doina
    Zaltariov, Mirela-Fernanda
    Ciubotaru, Bianca-Iulia
    Bargan, Alexandra
    Varganici, Cristian-Dragos
    Vasiliu, Ana-Lavinia
    Peptanariu, Dragos
    Balan-Porcarasu, Mihaela
    Timofte-Zorila, Mihaela-Madalina
    GELS, 2022, 8 (08)
  • [44] Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering
    Suri, Shalu
    Han, Li-Hsin
    Zhang, Wande
    Singh, Ankur
    Chen, Shaochen
    Schmidt, Christine E.
    BIOMEDICAL MICRODEVICES, 2011, 13 (06) : 983 - 993
  • [45] Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering
    Wang, Min
    Deng, Zexing
    Guo, Yi
    Xu, Peng
    MATERIALS TODAY BIO, 2022, 17
  • [46] Injectable Thermosensitive Hyaluronic Acid Hydrogels for Chondrocyte Delivery in Cartilage Tissue Engineering
    Chen, Chih-Hao
    Kao, Hao-Hsi
    Lee, Yen-Chen
    Chen, Jyh-Ping
    PHARMACEUTICALS, 2023, 16 (09)
  • [47] Viscoelasticity of hyaluronic acid-gelatin hydrogels for vocal fold tissue engineering
    Kazemirad, Siavash
    Heris, Hossein K.
    Mongeau, Luc
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2016, 104 (02) : 283 - 290
  • [48] Hyaluronic Acid-based Biomimetic Hydrogels for Tissue Engineering and Medical Applications
    Soohwan An
    Soojeong Choi
    Sungjin Min
    Seung-Woo Cho
    Biotechnology and Bioprocess Engineering, 2021, 26 : 503 - 516
  • [49] Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering
    Hwang, Hee Sook
    Lee, Chung-Sung
    GELS, 2023, 9 (07)
  • [50] Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering
    Dashtebayaz, Masumeh Sepideh Salehi
    Nourbakhsh, Mohammad Sadegh
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (08) : 442 - 451