The excellent performance of nitrogen-doped porous carbon nanowires modified activated carbon as air cathode catalyst for microbial fuel cells

被引:13
|
作者
Yang, Rui [1 ,2 ,3 ]
Li, Kexun [1 ,2 ,3 ]
Lv, Cuicui [1 ,2 ,3 ]
Cen, Benqiang [1 ,2 ,3 ]
Wang, Lei [4 ]
Liang, Bolong [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, Tianjin 300071, Peoples R China
[2] Nankai Univ, MOE Key Lab Pollut Proc & Environm Criteria, Tianjin 300071, Peoples R China
[3] Tianjin Key Lab Environm Technol Complex Trans Me, Tianjin 300071, Peoples R China
[4] China Coal Soc, Beijing 100013, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会;
关键词
Nitrogen-doped carbon nanowires; Polypyrrole; Nanostructured carbons; Oxygen reduction reaction; Microbial fuel cells; OXYGEN REDUCTION REACTION; HIGH-SURFACE-AREA; HIGHLY EFFICIENT; GRAPHENE OXIDE; LOW-TEMPERATURE; POLYPYRROLE; ELECTROCATALYST; GENERATION; NANOSHEETS; NANOTUBES;
D O I
10.1007/s10008-019-04403-5
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nitrogen-doped porous carbon nanowires with polypyrrole as precursor are synthesized by modified oxidation template assembly method. The nitrogen-doped porous carbon nanowires air cathode microbial fuel cells present a maximum power density of 1641.7 +/- 0.7 mW m(-2), a significant exchange current density of 19.97 x 10(-4) A cm(-2) and an outstanding open circuit voltage of 0.303 V, which are all higher than the control. Nitrogen-doped porous carbon nanowires modified activated carbon catalyzes oxygen reduction reaction via a four-electron reaction with an electron transfer number of 3.89, which can be comparable with Pt-based catalyst. It is testified that the nitrogen-doped porous carbon nanowires are featured with the structure and morphology of surface porous amorphous nanocarbon structure doped with large content of nitrogen. The incorporation of nitrogen, intertwined hollow nanowires, and the porous three-dimensional network configuration make an outstanding contribution to the oxygen reduction reaction. Nitrogen-doped porous carbon nanowires are expected to be a new catalyst to improve the performance of the microbial fuel cells.
引用
收藏
页码:3437 / 3447
页数:11
相关论文
共 50 条
  • [1] The excellent performance of nitrogen-doped porous carbon nanowires modified activated carbon as air cathode catalyst for microbial fuel cells
    Rui Yang
    Kexun Li
    Cuicui Lv
    Benqiang Cen
    Lei Wang
    Bolong Liang
    Journal of Solid State Electrochemistry, 2019, 23 : 3437 - 3447
  • [2] The exceptional performance of polyhedral porous carbon embedded nitrogen-doped carbon networks as cathode catalyst in microbial fuel cells
    Yang, Rui
    Li, Kexun
    Lv, Cuicui
    Cen, Benqiang
    Liang, Bolong
    JOURNAL OF POWER SOURCES, 2019, 442
  • [3] The performance of phosphorus (P)-doped activated carbon as a catalyst in air-cathode microbial fuel cells
    Chen, Zhihao
    Li, Kexun
    Pu, Liangtao
    BIORESOURCE TECHNOLOGY, 2014, 170 : 379 - 384
  • [4] The excellent performance and mechanism of activated carbon air cathode doped with different type of cobalt for microbial fuel cells
    Liu, Ziqi
    Ge, Baochao
    Li, Kexun
    Zhang, Xi
    Huang, Kan
    FUEL, 2016, 176 : 173 - 180
  • [5] Air Cathode Catalysts of Microbial Fuel Cell by Nitrogen-Doped Carbon Aerogels
    Yang, Wei
    Peng, Yi
    Zhang, Yudong
    Lu, Jia En
    Li, Jun
    Chen, Shaowei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (04) : 3917 - 3924
  • [6] Activated nitrogen-doped ordered porous carbon as advanced anode for high-performance microbial fuel cells
    Chen, Meiqiong
    Guo, Wenxian
    Zhang, Yan
    Xiao, Hongfei
    Lin, Jiajin
    Rao, Yuan
    Zhang, Min
    Cheng, Faliang
    Lu, Xihong
    ELECTROCHIMICA ACTA, 2021, 391
  • [7] Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells
    Yang, Wulin
    Logan, Bruce E.
    CHEMSUSCHEM, 2016, 9 (16) : 2226 - 2232
  • [8] Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells
    Wen, Qing
    Wang, Shaoyun
    Yan, Jun
    Cong, Lijie
    Chen, Ye
    Xi, Hongyuan
    BIOELECTROCHEMISTRY, 2014, 95 : 23 - 28
  • [9] The high-performance and mechanism of P-doped activated carbon as a catalyst for air-cathode microbial fuel cells
    Liu, Yunting
    Li, Kexun
    Liu, Yi
    Pu, Liangtao
    Chen, Zhihao
    Deng, Shuguang
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (42) : 21149 - 21158
  • [10] Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells
    Liu, Yi
    Zhao, Yong
    Li, Kexun
    Wang, Zhong
    Tian, Pei
    Liu, Di
    Yang, Tingting
    Wang, Junjie
    JOURNAL OF POWER SOURCES, 2018, 378 : 1 - 9