A short note on "Group theoretic approach to rationally extended shape invariant potentials" [Ann. Phys. 359 (2015) 46-54]

被引:9
作者
Ramos, Arturo [1 ]
Bagchi, Bijan [2 ]
Khare, Avinash [3 ]
Kumari, Nisha [4 ]
Mandal, Bhabani Prasad [4 ]
Yadav, Rajesh Kumar [5 ]
机构
[1] Univ Zaragoza, Dept Anal Econ, Gran Via 2, E-50005 Zaragoza, Spain
[2] Shiv Nadar Univ, Sch Nat Sci, Dept Phys, Greater Noida 201314, India
[3] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India
[4] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India
[5] SKM Univ, SP Coll, Dept Phys, Dumka 814101, India
关键词
Shape invariance; Compatibility condition; Potential algebra; ORTHOGONAL POLYNOMIALS; SOLVABLE POTENTIALS; SUPERSYMMETRY; EXTENSIONS;
D O I
10.1016/j.aop.2017.05.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is proved the equivalence of the compatibility condition of Ramos (2011, 2012) with a condition found in Yadav et al. (2015). The link of Shape Invariance with the existence of a Potential Algebra is reinforced for the rationally extended Shape Invariant potentials. Some examples on X-1 and X-l Jacobi and Laguerre cases are given. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 22 条
[1]  
Bagchi B, 2009, PRAMANA-J PHYS, V73, P337, DOI 10.1007/s12043-009-0126-4
[2]  
Cooper F., 2001, QUANTUM MECH
[3]  
Gangopadhyaya A., 2017, Supersymmetric Quantum Mechanics, V2
[4]  
GENDENSHTEIN LE, 1983, JETP LETT+, V38, P356
[5]   Extended Krein-Adler theorem for the translationally shape invariant potentials [J].
Gomez-Ullate, David ;
Grandati, Yves ;
Milson, Robert .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (04)
[6]   An extended class of orthogonal polynomials defined by a Sturm-Liouville problem [J].
Gomez-Ullate, David ;
Kamran, Niky ;
Milson, Robert .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (01) :352-367
[7]   A short proof of the Gaillard-Matveev theorem based on shape invariance arguments [J].
Grandati, Y. .
PHYSICS LETTERS A, 2014, 378 (26-27) :1755-1759
[8]   Comments on the generalized SUSY QM partnership for Darboux-Poschl-Teller potential and exceptional Jacobi polynomials [J].
Grandati, Y. ;
Berard, A. .
JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) :161-171
[9]   Rational solutions for the Riccati-Schrodinger equations associated to translationally shape invariant potentials [J].
Grandati, Y. ;
Berard, A. .
ANNALS OF PHYSICS, 2010, 325 (06) :1235-1259
[10]   New rational extensions of solvable potentials with finite bound state spectrum [J].
Grandati, Yves .
PHYSICS LETTERS A, 2012, 376 (45) :2866-2872