Compressing magnetic fields with high-energy lasers

被引:92
作者
Knauer, J. P. [1 ]
Gotchev, O. V. [1 ,2 ,3 ]
Chang, P. Y. [1 ,4 ]
Meyerhofer, D. D. [1 ,2 ,3 ,4 ]
Polomarov, O. [2 ,3 ]
Betti, R. [1 ,2 ,3 ,4 ]
Frenje, J. A. [2 ,5 ]
Li, C. K. [2 ,5 ]
Manuel, M. J. -E. [2 ,5 ]
Petrasso, R. D. [2 ,5 ]
Rygg, J. R. [6 ]
Seguin, F. H. [2 ,5 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[2] Univ Rochester, Fus Sci Ctr Extreme States Matter & Fast Ignit P, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[4] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
[5] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[6] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
plasma inertial confinement; plasma production by laser; plasma shock waves; FUSION; PERFORMANCE; PROGRESS;
D O I
10.1063/1.3416557
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Laser-driven magnetic-field compression producing a magnetic field of tens of megaGauss is reported for the first time. A shock wave formed during the implosion of a cylindrical target traps an initial (seed) magnetic field that is amplified via conservation of magnetic flux. Such large fields are expected to magnetize the electrons in the hot, central plasma, leading to a cyclotron frequency exceeding the collision frequency. The Omega Laser Facility [T. R. Boehly , Opt. Commun. 133, 495 (1997)] was used to implode cylindrical CH targets filled with deuterium gas and seeded with an external field (>50 kG) from a magnetic pulse generator. This seed field is trapped and rapidly compressed by the imploding shell, minimizing the effect of resistive flux diffusion. The compressed field was probed via proton deflectrometry using 14.7 MeV protons from the D+He-3 fusion reaction emitted by an imploding glass microballoon. Line-averaged magnetic fields of the imploded core were measured to between 30 and 40 MG. Experimental data were analyzed with both a magnetohydrodynamic version of the one-dimensional hydrocode LILAC [J. Delettrez , Phys. Rev. A 36, 3926 (1987); N. W. Jang , Bull. Am. Phys. Soc. 51, 144 (2006)] and the particle propagation code GEANT4 [S. Agostinelli , Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)]. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3416557]
引用
收藏
页数:8
相关论文
共 26 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion -: art. no. 110702 [J].
Betti, R ;
Zhou, C .
PHYSICS OF PLASMAS, 2005, 12 (11) :1-4
[3]   Direct-drive laser fusion: Status and prospects [J].
Bodner, SE ;
Colombant, DG ;
Gardner, JH ;
Lehmberg, RH ;
Obenschain, SP ;
Phillips, L ;
Schmitt, AJ ;
Sethian, JD ;
McCrory, RL ;
Seka, W ;
Verdon, CP ;
Knauer, JP ;
Afeyan, BB ;
Powell, HT .
PHYSICS OF PLASMAS, 1998, 5 (05) :1901-1918
[4]   Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser [J].
Boehly, TR ;
Smalyuk, VA ;
Meyerhofer, DD ;
Knauer, JP ;
Bradley, DK ;
Craxton, RS ;
Guardalben, MJ ;
Skupsky, S ;
Kessler, TJ .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (07) :3444-3447
[5]   Initial performance results of the OMEGA laser system [J].
Boehly, TR ;
Brown, DL ;
Craxton, RS ;
Keck, RL ;
Knauer, JP ;
Kelly, JH ;
Kessler, TJ ;
Kumpan, SA ;
Loucks, SJ ;
Letzring, SA ;
Marshall, FJ ;
McCrory, RL ;
Morse, SFB ;
Seka, W ;
Soures, JM ;
Verdon, CP .
OPTICS COMMUNICATIONS, 1997, 133 (1-6) :495-506
[6]   EFFECT OF LASER ILLUMINATION NONUNIFORMITY ON THE ANALYSIS OF TIME-RESOLVED X-RAY MEASUREMENTS IN UV-SPHERICAL TRANSPORT EXPERIMENTS [J].
DELETTREZ, J ;
EPSTEIN, R ;
RICHARDSON, MC ;
JAANIMAGI, PA ;
HENKE, BL .
PHYSICAL REVIEW A, 1987, 36 (08) :3926-3934
[7]   COMPRESSION OF ULTRAHIGH MAGNETIC-FIELDS IN A GAS-PUFF Z-PINCH [J].
FELBER, FS ;
MALLEY, MM ;
WESSEL, FJ ;
MATZEN, MK ;
PALMER, MA ;
SPIELMAN, RB ;
LIBERMAN, MA ;
VELIKOVICH, AL .
PHYSICS OF FLUIDS, 1988, 31 (07) :2053-2056
[8]   Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas [J].
Gotchev, O. V. ;
Knauer, J. P. ;
Chang, P. Y. ;
Jang, N. W. ;
Shoup, M. J., III ;
Meyerhofer, D. D. ;
Betti, R. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (04)
[9]   The NIF Ignition Program: progress and planning [J].
Hammel, B. A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (12B) :B497-B506
[10]   Charged-particle acceleration and energy loss in laser-produced plasmas [J].
Hicks, DG ;
Li, CK ;
Séguin, FH ;
Ram, AK ;
Frenje, JA ;
Petrasso, RD ;
Soures, JM ;
Glebov, VY ;
Meyerhofer, DD ;
Roberts, S ;
Sorce, C ;
Stöckl, C ;
Sangster, TC ;
Phillips, TW .
PHYSICS OF PLASMAS, 2000, 7 (12) :5106-5117