Multiple solutions of Kirchhoff type equations involving Neumann conditions and critical growth

被引:5
作者
Lei, Jun [1 ]
Suo, Hongmin [1 ]
机构
[1] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 04期
基金
中国国家自然科学基金;
关键词
Kirchhoff type equation; Neumann problem; critical growth; variation methods; nontrivial solution; GROUND-STATE SOLUTIONS; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE;
D O I
10.3934/math.2021227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Neumann problem of Kirchhoff type equation {-(a+b integral(Omega) vertical bar del vertical bar(2) dx)Delta u + u = Q(x)vertical bar u vertical bar(4)u + lambda P(x)vertical bar u vertical bar(q-2)u, in Omega, partial derivative u/partial derivative v = 0, on partial derivative Omega, where Omega subset of R-3 is a bounded domain with a smooth boundary, a, b > 0, 1 < q < 2, lambda > 0 is a real parameter, Q(x) and P(x) satisfy some suitable assumptions. By using the variational method and the concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions.
引用
收藏
页码:3821 / 3837
页数:17
相关论文
共 34 条
[1]   ON A CLASS OF NONLOCAL ELLIPTIC PROBLEMS WITH CRITICAL GROWTH [J].
Alves, C. O. ;
Correa, F. J. S. A. ;
Figueiredo, G. M. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (03) :409-417
[2]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
[Anonymous], 1883, MECHANIK
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]  
Cao X. F., 2016, ELECT J DIFFER EQUAT, V301, P1
[7]   The critical Neumann problem for semilinear elliptic equations with concave perturbations [J].
Chabrowski J. .
Ricerche di Matematica, 2007, 56 (2) :297-319
[8]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[9]   Existence of ground state solutions for Kirchhoff-type problems involving critical Sobolev exponents [J].
Fan, Haining .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) :371-385
[10]   Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument [J].
Figueiredo, Giovany M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) :706-713