Colding Minicozzi entropy in hyperbolic space

被引:5
作者
Bernstein, Jacob [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
关键词
CLOSED HYPERSURFACES;
D O I
10.1016/j.na.2021.112401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note introduces a notion of entropy for submanifolds of hyperbolic space analogous to the one introduced by Colding and Minicozzi for submanifolds of Euclidean space. Several properties are proved for this quantity including monotonicity along mean curvature flow in low dimensions and a connection with the conformal volume. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 27 条
[1]   Renormalized Area and Properly Embedded Minimal Surfaces in Hyperbolic 3-Manifolds [J].
Alexakis, Spyridon ;
Mazzeo, Rafe .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (03) :621-651
[2]  
Alexakis S, 2015, J DIFFER GEOM, V101, P369
[3]   COMPLETE MINIMAL HYPERSURFACES IN HYPERBOLIC N-MANIFOLDS [J].
ANDERSON, MT .
COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (02) :264-290
[4]  
Bernstein J., 2019, TOPOGICAL UNIQUENESS
[5]  
Bernstein J., 2020, CLOSED HYPERSURFACES
[6]  
Bernstein J., 2018, SMOOTH COMPACTNESS S
[7]  
Bernstein J., 2019, RELATIVE EXPANDER EN
[8]  
Bernstein J, 2018, MATH RES LETT, V25, P347, DOI 10.4310/MRL.2018.v25.n2.a1
[9]   Topology of closed hypersurfaces of small entropy [J].
Bernstein, Jacob ;
Wang, Lu .
GEOMETRY & TOPOLOGY, 2018, 22 (02) :1109-1141
[10]   A TOPOLOGICAL PROPERTY OF ASYMPTOTICALLY CONICAL SELF-SHRINKERS OF SMALL ENTROPY [J].
Bernstein, Jacob ;
Wang, Lu .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (03) :403-435